Amesos Package Browser (Single Doxygen Collection)  Development
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
amesos_amd_1.c
Go to the documentation of this file.
1 /* ========================================================================= */
2 /* === AMD_1 =============================================================== */
3 /* ========================================================================= */
4 
5 /* ------------------------------------------------------------------------- */
6 /* AMD, Copyright (c) Timothy A. Davis, */
7 /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */
8 /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */
9 /* web: http://www.cise.ufl.edu/research/sparse/amd */
10 /* ------------------------------------------------------------------------- */
11 
12 /* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering.
13  *
14  * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style
15  * compressed-column form, with sorted row indices in each column, and no
16  * duplicate entries. Diagonal entries may be present, but they are ignored.
17  * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1].
18  * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The
19  * size of the matrix, n, must be greater than or equal to zero.
20  *
21  * This routine must be preceded by a call to AMD_aat, which computes the
22  * number of entries in each row/column in A+A', excluding the diagonal.
23  * Len [j], on input, is the number of entries in row/column j of A+A'. This
24  * routine constructs the matrix A+A' and then calls AMD_2. No error checking
25  * is performed (this was done in AMD_valid).
26  */
27 
28 #include "amesos_amd_internal.h"
29 
30 GLOBAL void AMD_1
31 (
32  Int n, /* n > 0 */
33  const Int Ap [ ], /* input of size n+1, not modified */
34  const Int Ai [ ], /* input of size nz = Ap [n], not modified */
35  Int P [ ], /* size n output permutation */
36  Int Pinv [ ], /* size n output inverse permutation */
37  Int Len [ ], /* size n input, undefined on output */
38  Int slen, /* slen >= sum (Len [0..n-1]) + 7n,
39  * ideally slen = 1.2 * sum (Len) + 8n */
40  Int S [ ], /* size slen workspace */
41  double Control [ ], /* input array of size AMD_CONTROL */
42  double Info [ ] /* output array of size AMD_INFO */
43 )
44 {
45  Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head,
46  *Elen, *Degree, *s, *W, *Sp, *Tp ;
47 
48  /* --------------------------------------------------------------------- */
49  /* construct the matrix for AMD_2 */
50  /* --------------------------------------------------------------------- */
51 
52  ASSERT (n > 0) ;
53 
54  iwlen = slen - 6*n ;
55  s = S ;
56  Pe = s ; s += n ;
57  Nv = s ; s += n ;
58  Head = s ; s += n ;
59  Elen = s ; s += n ;
60  Degree = s ; s += n ;
61  W = s ; s += n ;
62  Iw = s ; s += iwlen ;
63 
64  ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ;
65 
66  /* construct the pointers for A+A' */
67  Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */
68  Tp = W ;
69  pfree = 0 ;
70  for (j = 0 ; j < n ; j++)
71  {
72  Pe [j] = pfree ;
73  Sp [j] = pfree ;
74  pfree += Len [j] ;
75  }
76 
77  /* Note that this restriction on iwlen is slightly more restrictive than
78  * what is strictly required in AMD_2. AMD_2 can operate with no elbow
79  * room at all, but it will be very slow. For better performance, at
80  * least size-n elbow room is enforced. */
81  ASSERT (iwlen >= pfree + n) ;
82 
83 #ifndef NDEBUG
84  for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ;
85 #endif
86 
87  for (k = 0 ; k < n ; k++)
88  {
89  AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ;
90  p1 = Ap [k] ;
91  p2 = Ap [k+1] ;
92 
93  /* construct A+A' */
94  for (p = p1 ; p < p2 ; )
95  {
96  /* scan the upper triangular part of A */
97  j = Ai [p] ;
98  ASSERT (j >= 0 && j < n) ;
99  if (j < k)
100  {
101  /* entry A (j,k) in the strictly upper triangular part */
102  ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ;
103  ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ;
104  Iw [Sp [j]++] = k ;
105  Iw [Sp [k]++] = j ;
106  p++ ;
107  }
108  else if (j == k)
109  {
110  /* skip the diagonal */
111  p++ ;
112  break ;
113  }
114  else /* j > k */
115  {
116  /* first entry below the diagonal */
117  break ;
118  }
119  /* scan lower triangular part of A, in column j until reaching
120  * row k. Start where last scan left off. */
121  ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ;
122  pj2 = Ap [j+1] ;
123  for (pj = Tp [j] ; pj < pj2 ; )
124  {
125  i = Ai [pj] ;
126  ASSERT (i >= 0 && i < n) ;
127  if (i < k)
128  {
129  /* A (i,j) is only in the lower part, not in upper */
130  ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ;
131  ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ;
132  Iw [Sp [i]++] = j ;
133  Iw [Sp [j]++] = i ;
134  pj++ ;
135  }
136  else if (i == k)
137  {
138  /* entry A (k,j) in lower part and A (j,k) in upper */
139  pj++ ;
140  break ;
141  }
142  else /* i > k */
143  {
144  /* consider this entry later, when k advances to i */
145  break ;
146  }
147  }
148  Tp [j] = pj ;
149  }
150  Tp [k] = p ;
151  }
152 
153  /* clean up, for remaining mismatched entries */
154  for (j = 0 ; j < n ; j++)
155  {
156  for (pj = Tp [j] ; pj < Ap [j+1] ; pj++)
157  {
158  i = Ai [pj] ;
159  ASSERT (i >= 0 && i < n) ;
160  /* A (i,j) is only in the lower part, not in upper */
161  ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ;
162  ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ;
163  Iw [Sp [i]++] = j ;
164  Iw [Sp [j]++] = i ;
165  }
166  }
167 
168 #ifndef NDEBUG
169  for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ;
170  ASSERT (Sp [n-1] == pfree) ;
171 #endif
172 
173  /* Tp and Sp no longer needed ] */
174 
175  /* --------------------------------------------------------------------- */
176  /* order the matrix */
177  /* --------------------------------------------------------------------- */
178 
179  AMD_2 (n, Pe, Iw, Len, iwlen, pfree,
180  Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ;
181 }
#define EMPTY
#define GLOBAL
#define AMD_DEBUG1(params)
#define Int
#define P(k)
#define ASSERT(expression)
GLOBAL void AMD_1(Int n, const Int Ap[], const Int Ai[], Int P[], Int Pinv[], Int Len[], Int slen, Int S[], double Control[], double Info[])
Definition: amesos_amd_1.c:31
#define ID
#define AMD_2
#define AMD_OK
Definition: amesos_amd.h:371
#define AMD_valid