NOX  Development
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Public Member Functions | Protected Attributes | List of all members
LOCA::BorderedSolver::UpperTriangularBlockElimination Class Reference

Block elimination strategy for solving a block upper-triangular system. More...

#include <LOCA_BorderedSolver_UpperTriangularBlockElimination.H>

Collaboration diagram for LOCA::BorderedSolver::UpperTriangularBlockElimination:
Collaboration graph
[legend]

Public Member Functions

 UpperTriangularBlockElimination (const Teuchos::RCP< LOCA::GlobalData > &global_data)
 Constructor. More...
 
virtual ~UpperTriangularBlockElimination ()
 Destructor.
 
NOX::Abstract::Group::ReturnType solve (Teuchos::ParameterList &params, const LOCA::BorderedSolver::AbstractOperator &op, const NOX::Abstract::MultiVector *A, const NOX::Abstract::MultiVector::DenseMatrix &C, const NOX::Abstract::MultiVector *F, const NOX::Abstract::MultiVector::DenseMatrix *G, NOX::Abstract::MultiVector &X, NOX::Abstract::MultiVector::DenseMatrix &Y) const
 Solves the extended system as described above. More...
 
NOX::Abstract::Group::ReturnType solveTranspose (Teuchos::ParameterList &params, const LOCA::BorderedSolver::AbstractOperator &op, const NOX::Abstract::MultiVector *A, const NOX::Abstract::MultiVector::DenseMatrix &C, const NOX::Abstract::MultiVector *F, const NOX::Abstract::MultiVector::DenseMatrix *G, NOX::Abstract::MultiVector &X, NOX::Abstract::MultiVector::DenseMatrix &Y) const
 Solves the extended system using the tranpose of J and C as described above. More...
 

Protected Attributes

Teuchos::RCP< LOCA::GlobalDataglobalData
 Global data object.
 

Detailed Description

Block elimination strategy for solving a block upper-triangular system.

This class solves the extended system of equations

\[ \begin{bmatrix} op(J) & A \\ 0 & op(C) \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} F \\ G \end{bmatrix} \]

via block elimination:

\[ \begin{aligned} Y &= op(C)^{-1}G \\ X &= op(J)^{-1}(F - A Y) \end{aligned} \]

where $op$ represents either the identity operation or the transpose. $C$ must be nonzero, while $A$, $F$ or $G$ may be zero. The solve for the non-transposed system is implemented by the solve() method, while the solve for the transposed system is implemented by the solveTranspose() method.

Constructor & Destructor Documentation

LOCA::BorderedSolver::UpperTriangularBlockElimination::UpperTriangularBlockElimination ( const Teuchos::RCP< LOCA::GlobalData > &  global_data)

Constructor.

Parameters
global_data[in] Global data object

Member Function Documentation


The documentation for this class was generated from the following files: