MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_TentativePFactory_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Andrey Prokopenko (aprokop@sandia.gov)
41 // Ray Tuminaro (rstumin@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_TENTATIVEPFACTORY_DEF_HPP
47 #define MUELU_TENTATIVEPFACTORY_DEF_HPP
48 
49 #include <Xpetra_MapFactory.hpp>
50 #include <Xpetra_Map.hpp>
51 #include <Xpetra_CrsMatrix.hpp>
52 #include <Xpetra_Matrix.hpp>
53 #include <Xpetra_MultiVector.hpp>
54 #include <Xpetra_MultiVectorFactory.hpp>
55 #include <Xpetra_VectorFactory.hpp>
56 #include <Xpetra_Import.hpp>
57 #include <Xpetra_ImportFactory.hpp>
58 #include <Xpetra_CrsMatrixWrap.hpp>
59 #include <Xpetra_StridedMap.hpp>
60 #include <Xpetra_StridedMapFactory.hpp>
61 
63 
64 #include "MueLu_Aggregates.hpp"
65 #include "MueLu_AmalgamationFactory.hpp"
66 #include "MueLu_AmalgamationInfo.hpp"
67 #include "MueLu_CoarseMapFactory.hpp"
68 #include "MueLu_MasterList.hpp"
69 #include "MueLu_Monitor.hpp"
70 #include "MueLu_NullspaceFactory.hpp"
71 #include "MueLu_PerfUtils.hpp"
72 #include "MueLu_Utilities.hpp"
73 
74 namespace MueLu {
75 
76  template <class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node>
78  RCP<ParameterList> validParamList = rcp(new ParameterList());
79 
80 #define SET_VALID_ENTRY(name) validParamList->setEntry(name, MasterList::getEntry(name))
81  SET_VALID_ENTRY("tentative: calculate qr");
82  SET_VALID_ENTRY("tentative: build coarse coordinates");
83 #undef SET_VALID_ENTRY
84  validParamList->set< std::string >("Nullspace name", "Nullspace", "Name for the input nullspace");
85 
86  validParamList->set< RCP<const FactoryBase> >("A", Teuchos::null, "Generating factory of the matrix A");
87  validParamList->set< RCP<const FactoryBase> >("Aggregates", Teuchos::null, "Generating factory of the aggregates");
88  validParamList->set< RCP<const FactoryBase> >("Nullspace", Teuchos::null, "Generating factory of the nullspace");
89  validParamList->set< RCP<const FactoryBase> >("Scaled Nullspace", Teuchos::null, "Generating factory of the scaled nullspace");
90  validParamList->set< RCP<const FactoryBase> >("UnAmalgamationInfo", Teuchos::null, "Generating factory of UnAmalgamationInfo");
91  validParamList->set< RCP<const FactoryBase> >("CoarseMap", Teuchos::null, "Generating factory of the coarse map");
92  validParamList->set< RCP<const FactoryBase> >("Coordinates", Teuchos::null, "Generating factory of the coordinates");
93  validParamList->set< RCP<const FactoryBase> >("Node Comm", Teuchos::null, "Generating factory of the node level communicator");
94 
95  // Make sure we don't recursively validate options for the matrixmatrix kernels
96  ParameterList norecurse;
97  norecurse.disableRecursiveValidation();
98  validParamList->set<ParameterList> ("matrixmatrix: kernel params", norecurse, "MatrixMatrix kernel parameters");
99 
100  return validParamList;
101  }
102 
103  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
105 
106  const ParameterList& pL = GetParameterList();
107  // NOTE: This guy can only either be 'Nullspace' or 'Scaled Nullspace' or else the validator above will cause issues
108  std::string nspName = "Nullspace";
109  if(pL.isParameter("Nullspace name")) nspName = pL.get<std::string>("Nullspace name");
110 
111  Input(fineLevel, "A");
112  Input(fineLevel, "Aggregates");
113  Input(fineLevel, nspName);
114  Input(fineLevel, "UnAmalgamationInfo");
115  Input(fineLevel, "CoarseMap");
116  if( fineLevel.GetLevelID() == 0 &&
117  fineLevel.IsAvailable("Coordinates", NoFactory::get()) && // we have coordinates (provided by user app)
118  pL.get<bool>("tentative: build coarse coordinates") ) { // and we want coordinates on other levels
119  bTransferCoordinates_ = true; // then set the transfer coordinates flag to true
120  Input(fineLevel, "Coordinates");
121  } else if (bTransferCoordinates_) {
122  Input(fineLevel, "Coordinates");
123  }
124  }
125 
126  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
128  return BuildP(fineLevel, coarseLevel);
129  }
130 
131  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
133  FactoryMonitor m(*this, "Build", coarseLevel);
134  typedef typename Teuchos::ScalarTraits<Scalar>::coordinateType coordinate_type;
135  typedef Xpetra::MultiVector<coordinate_type,LO,GO,NO> RealValuedMultiVector;
136  typedef Xpetra::MultiVectorFactory<coordinate_type,LO,GO,NO> RealValuedMultiVectorFactory;
137 
138  const ParameterList& pL = GetParameterList();
139  std::string nspName = "Nullspace";
140  if(pL.isParameter("Nullspace name")) nspName = pL.get<std::string>("Nullspace name");
141 
142 
143  RCP<Matrix> A = Get< RCP<Matrix> > (fineLevel, "A");
144  RCP<Aggregates> aggregates = Get< RCP<Aggregates> > (fineLevel, "Aggregates");
145  RCP<AmalgamationInfo> amalgInfo = Get< RCP<AmalgamationInfo> > (fineLevel, "UnAmalgamationInfo");
146  RCP<MultiVector> fineNullspace = Get< RCP<MultiVector> > (fineLevel, nspName);
147  RCP<const Map> coarseMap = Get< RCP<const Map> > (fineLevel, "CoarseMap");
148  RCP<RealValuedMultiVector> fineCoords;
149  if(bTransferCoordinates_) {
150  fineCoords = Get< RCP<RealValuedMultiVector> >(fineLevel, "Coordinates");
151  }
152 
153  // FIXME: We should remove the NodeComm on levels past the threshold
154  if(fineLevel.IsAvailable("Node Comm")) {
155  RCP<const Teuchos::Comm<int> > nodeComm = Get<RCP<const Teuchos::Comm<int> > >(fineLevel,"Node Comm");
156  Set<RCP<const Teuchos::Comm<int> > >(coarseLevel, "Node Comm", nodeComm);
157  }
158 
159  TEUCHOS_TEST_FOR_EXCEPTION(A->getRowMap()->getNodeNumElements() != fineNullspace->getMap()->getNodeNumElements(),
160  Exceptions::RuntimeError,"MueLu::TentativePFactory::MakeTentative: Size mismatch between A and Nullspace");
161 
162  RCP<Matrix> Ptentative;
163  RCP<MultiVector> coarseNullspace;
164  RCP<RealValuedMultiVector> coarseCoords;
165 
166  if(bTransferCoordinates_) {
167  //*** Create the coarse coordinates ***
168  // First create the coarse map and coarse multivector
169  ArrayView<const GO> elementAList = coarseMap->getNodeElementList();
170  LO blkSize = 1;
171  if (rcp_dynamic_cast<const StridedMap>(coarseMap) != Teuchos::null) {
172  blkSize = rcp_dynamic_cast<const StridedMap>(coarseMap)->getFixedBlockSize();
173  }
174  GO indexBase = coarseMap->getIndexBase();
175  LO numCoarseNodes = Teuchos::as<LO>(elementAList.size() / blkSize);
176  Array<GO> nodeList(numCoarseNodes);
177  const int numDimensions = fineCoords->getNumVectors();
178 
179  for (LO i = 0; i < numCoarseNodes; i++) {
180  nodeList[i] = (elementAList[i*blkSize]-indexBase)/blkSize + indexBase;
181  }
182  RCP<const Map> coarseCoordsMap = MapFactory::Build(fineCoords->getMap()->lib(),
184  nodeList,
185  indexBase,
186  fineCoords->getMap()->getComm());
187  coarseCoords = RealValuedMultiVectorFactory::Build(coarseCoordsMap, numDimensions);
188 
189  // Create overlapped fine coordinates to reduce global communication
190  RCP<RealValuedMultiVector> ghostedCoords;
191  if (aggregates->AggregatesCrossProcessors()) {
192  RCP<const Map> aggMap = aggregates->GetMap();
193  RCP<const Import> importer = ImportFactory::Build(fineCoords->getMap(), aggMap);
194 
195  ghostedCoords = RealValuedMultiVectorFactory::Build(aggMap, numDimensions);
196  ghostedCoords->doImport(*fineCoords, *importer, Xpetra::INSERT);
197  } else {
198  ghostedCoords = fineCoords;
199  }
200 
201  // Get some info about aggregates
202  int myPID = coarseCoordsMap->getComm()->getRank();
203  LO numAggs = aggregates->GetNumAggregates();
204  ArrayRCP<LO> aggSizes = aggregates->ComputeAggregateSizes();
205  const ArrayRCP<const LO> vertex2AggID = aggregates->GetVertex2AggId()->getData(0);
206  const ArrayRCP<const LO> procWinner = aggregates->GetProcWinner()->getData(0);
207 
208  // Fill in coarse coordinates
209  for (int dim = 0; dim < numDimensions; ++dim) {
210  ArrayRCP<const coordinate_type> fineCoordsData = ghostedCoords->getData(dim);
211  ArrayRCP<coordinate_type> coarseCoordsData = coarseCoords->getDataNonConst(dim);
212 
213  for (LO lnode = 0; lnode < Teuchos::as<LO>(vertex2AggID.size()); lnode++) {
214  if (procWinner[lnode] == myPID &&
215  lnode < fineCoordsData.size() &&
216  vertex2AggID[lnode] < coarseCoordsData.size() &&
217  Teuchos::ScalarTraits<coordinate_type>::isnaninf(fineCoordsData[lnode]) == false) {
218  coarseCoordsData[vertex2AggID[lnode]] += fineCoordsData[lnode];
219  }
220  }
221  for (LO agg = 0; agg < numAggs; agg++) {
222  coarseCoordsData[agg] /= aggSizes[agg];
223  }
224  }
225  }
226 
227  if (!aggregates->AggregatesCrossProcessors())
228  BuildPuncoupled(A, aggregates, amalgInfo, fineNullspace, coarseMap, Ptentative, coarseNullspace,coarseLevel.GetLevelID());
229  else
230  BuildPcoupled (A, aggregates, amalgInfo, fineNullspace, coarseMap, Ptentative, coarseNullspace);
231 
232  // If available, use striding information of fine level matrix A for range
233  // map and coarseMap as domain map; otherwise use plain range map of
234  // Ptent = plain range map of A for range map and coarseMap as domain map.
235  // NOTE:
236  // The latter is not really safe, since there is no striding information
237  // for the range map. This is not really a problem, since striding
238  // information is always available on the intermedium levels and the
239  // coarsest levels.
240  if (A->IsView("stridedMaps") == true)
241  Ptentative->CreateView("stridedMaps", A->getRowMap("stridedMaps"), coarseMap);
242  else
243  Ptentative->CreateView("stridedMaps", Ptentative->getRangeMap(), coarseMap);
244 
245  if(bTransferCoordinates_) {
246  Set(coarseLevel, "Coordinates", coarseCoords);
247  }
248  Set(coarseLevel, "Nullspace", coarseNullspace);
249  Set(coarseLevel, "P", Ptentative);
250 
251  if (IsPrint(Statistics2)) {
252  RCP<ParameterList> params = rcp(new ParameterList());
253  params->set("printLoadBalancingInfo", true);
254  GetOStream(Statistics2) << PerfUtils::PrintMatrixInfo(*Ptentative, "Ptent", params);
255  }
256  }
257 
258  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
261  RCP<const Map> coarseMap, RCP<Matrix>& Ptentative, RCP<MultiVector>& coarseNullspace, const int levelID) const {
262  RCP<const Map> rowMap = A->getRowMap();
263  RCP<const Map> colMap = A->getColMap();
264 
265  const size_t numRows = rowMap->getNodeNumElements();
266 
267  typedef Teuchos::ScalarTraits<SC> STS;
268  typedef typename STS::magnitudeType Magnitude;
269  const SC zero = STS::zero();
270  const SC one = STS::one();
271  const LO INVALID = Teuchos::OrdinalTraits<LO>::invalid();
272 
273  const GO numAggs = aggregates->GetNumAggregates();
274  const size_t NSDim = fineNullspace->getNumVectors();
275 
276  // Aggregates map is based on the amalgamated column map
277  // We can skip global-to-local conversion if LIDs in row map are
278  // same as LIDs in column map
279  bool goodMap = isGoodMap(*rowMap, *colMap);
280 
281  // Create a lookup table to determine the rows (fine DOFs) that belong to a given aggregate.
282  // aggStart is a pointer into aggToRowMapLO
283  // aggStart[i]..aggStart[i+1] are indices into aggToRowMapLO
284  // aggToRowMapLO[aggStart[i]]..aggToRowMapLO[aggStart[i+1]-1] are the DOFs in aggregate i
285  ArrayRCP<LO> aggStart;
286  ArrayRCP<LO> aggToRowMapLO;
287  ArrayRCP<GO> aggToRowMapGO;
288  if (goodMap) {
289  amalgInfo->UnamalgamateAggregatesLO(*aggregates, aggStart, aggToRowMapLO);
290  GetOStream(Runtime1) << "Column map is consistent with the row map, good." << std::endl;
291 
292  } else {
293  amalgInfo->UnamalgamateAggregates(*aggregates, aggStart, aggToRowMapGO);
294  GetOStream(Warnings0) << "Column map is not consistent with the row map\n"
295  << "using GO->LO conversion with performance penalty" << std::endl;
296  }
297 
298  coarseNullspace = MultiVectorFactory::Build(coarseMap, NSDim);
299 
300  const ParameterList& pL = GetParameterList();
301  const bool &doQRStep = pL.get<bool>("tentative: calculate qr");
302 
303  // Pull out the nullspace vectors so that we can have random access.
304  ArrayRCP<ArrayRCP<const SC> > fineNS (NSDim);
305  ArrayRCP<ArrayRCP<SC> > coarseNS(NSDim);
306  for (size_t i = 0; i < NSDim; i++) {
307  fineNS[i] = fineNullspace->getData(i);
308  if (coarseMap->getNodeNumElements() > 0)
309  coarseNS[i] = coarseNullspace->getDataNonConst(i);
310  }
311 
312  size_t nnzEstimate = numRows * NSDim;
313 
314  // Time to construct the matrix and fill in the values
315  Ptentative = rcp(new CrsMatrixWrap(rowMap, coarseMap, 0, Xpetra::StaticProfile));
316  RCP<CrsMatrix> PtentCrs = rcp_dynamic_cast<CrsMatrixWrap>(Ptentative)->getCrsMatrix();
317 
318  ArrayRCP<size_t> iaPtent;
319  ArrayRCP<LO> jaPtent;
320  ArrayRCP<SC> valPtent;
321 
322  PtentCrs->allocateAllValues(nnzEstimate, iaPtent, jaPtent, valPtent);
323 
324  ArrayView<size_t> ia = iaPtent();
325  ArrayView<LO> ja = jaPtent();
326  ArrayView<SC> val = valPtent();
327 
328  ia[0] = 0;
329  for (size_t i = 1; i <= numRows; i++)
330  ia[i] = ia[i-1] + NSDim;
331 
332  for (size_t j = 0; j < nnzEstimate; j++) {
333  ja [j] = INVALID;
334  val[j] = zero;
335  }
336 
337 
338  if (doQRStep) {
340  // Standard aggregate-wise QR //
342  for (GO agg = 0; agg < numAggs; agg++) {
343  LO aggSize = aggStart[agg+1] - aggStart[agg];
344 
345  Xpetra::global_size_t offset = agg*NSDim;
346 
347  // Extract the piece of the nullspace corresponding to the aggregate, and
348  // put it in the flat array, "localQR" (in column major format) for the
349  // QR routine.
350  Teuchos::SerialDenseMatrix<LO,SC> localQR(aggSize, NSDim);
351  if (goodMap) {
352  for (size_t j = 0; j < NSDim; j++)
353  for (LO k = 0; k < aggSize; k++)
354  localQR(k,j) = fineNS[j][aggToRowMapLO[aggStart[agg]+k]];
355  } else {
356  for (size_t j = 0; j < NSDim; j++)
357  for (LO k = 0; k < aggSize; k++)
358  localQR(k,j) = fineNS[j][rowMap->getLocalElement(aggToRowMapGO[aggStart[agg]+k])];
359  }
360 
361  // Test for zero columns
362  for (size_t j = 0; j < NSDim; j++) {
363  bool bIsZeroNSColumn = true;
364 
365  for (LO k = 0; k < aggSize; k++)
366  if (localQR(k,j) != zero)
367  bIsZeroNSColumn = false;
368 
369  TEUCHOS_TEST_FOR_EXCEPTION(bIsZeroNSColumn == true, Exceptions::RuntimeError,
370  "MueLu::TentativePFactory::MakeTentative: fine level NS part has a zero column");
371  }
372 
373  // Calculate QR decomposition (standard)
374  // NOTE: Q is stored in localQR and R is stored in coarseNS
375  if (aggSize >= Teuchos::as<LO>(NSDim)) {
376 
377  if (NSDim == 1) {
378  // Only one nullspace vector, calculate Q and R by hand
379  Magnitude norm = STS::magnitude(zero);
380  for (size_t k = 0; k < Teuchos::as<size_t>(aggSize); k++)
381  norm += STS::magnitude(localQR(k,0)*localQR(k,0));
383 
384  // R = norm
385  coarseNS[0][offset] = norm;
386 
387  // Q = localQR(:,0)/norm
388  for (LO i = 0; i < aggSize; i++)
389  localQR(i,0) /= norm;
390 
391  } else {
393  qrSolver.setMatrix(Teuchos::rcp(&localQR, false));
394  qrSolver.factor();
395 
396  // R = upper triangular part of localQR
397  for (size_t j = 0; j < NSDim; j++)
398  for (size_t k = 0; k <= j; k++)
399  coarseNS[j][offset+k] = localQR(k,j); //TODO is offset+k the correct local ID?!
400 
401  // Calculate Q, the tentative prolongator.
402  // The Lapack GEQRF call only works for myAggsize >= NSDim
403  qrSolver.formQ();
405  for (size_t j = 0; j < NSDim; j++)
406  for (size_t i = 0; i < Teuchos::as<size_t>(aggSize); i++)
407  localQR(i,j) = (*qFactor)(i,j);
408  }
409 
410  } else {
411  // Special handling for aggSize < NSDim (i.e. single node aggregates in structural mechanics)
412 
413  // The local QR decomposition is not possible in the "overconstrained"
414  // case (i.e. number of columns in localQR > number of rows), which
415  // corresponds to #DOFs in Aggregate < NSDim. For usual problems this
416  // is only possible for single node aggregates in structural mechanics.
417  // (Similar problems may arise in discontinuous Galerkin problems...)
418  // We bypass the QR decomposition and use an identity block in the
419  // tentative prolongator for the single node aggregate and transfer the
420  // corresponding fine level null space information 1-to-1 to the coarse
421  // level null space part.
422 
423  // NOTE: The resulting tentative prolongation operator has
424  // (aggSize*DofsPerNode-NSDim) zero columns leading to a singular
425  // coarse level operator A. To deal with that one has the following
426  // options:
427  // - Use the "RepairMainDiagonal" flag in the RAPFactory (default:
428  // false) to add some identity block to the diagonal of the zero rows
429  // in the coarse level operator A, such that standard level smoothers
430  // can be used again.
431  // - Use special (projection-based) level smoothers, which can deal
432  // with singular matrices (very application specific)
433  // - Adapt the code below to avoid zero columns. However, we do not
434  // support a variable number of DOFs per node in MueLu/Xpetra which
435  // makes the implementation really hard.
436 
437  // R = extended (by adding identity rows) localQR
438  for (size_t j = 0; j < NSDim; j++)
439  for (size_t k = 0; k < NSDim; k++)
440  if (k < as<size_t>(aggSize))
441  coarseNS[j][offset+k] = localQR(k,j);
442  else
443  coarseNS[j][offset+k] = (k == j ? one : zero);
444 
445  // Q = I (rectangular)
446  for (size_t i = 0; i < as<size_t>(aggSize); i++)
447  for (size_t j = 0; j < NSDim; j++)
448  localQR(i,j) = (j == i ? one : zero);
449  }
450 
451 
452  // Process each row in the local Q factor
453  // FIXME: What happens if maps are blocked?
454  for (LO j = 0; j < aggSize; j++) {
455  LO localRow = (goodMap ? aggToRowMapLO[aggStart[agg]+j] : rowMap->getLocalElement(aggToRowMapGO[aggStart[agg]+j]));
456 
457  size_t rowStart = ia[localRow];
458  for (size_t k = 0, lnnz = 0; k < NSDim; k++) {
459  // Skip zeros (there may be plenty of them, i.e., NSDim > 1 or boundary conditions)
460  if (localQR(j,k) != zero) {
461  ja [rowStart+lnnz] = offset + k;
462  val[rowStart+lnnz] = localQR(j,k);
463  lnnz++;
464  }
465  }
466  }
467  }
468 
469  } else {
470  GetOStream(Runtime1) << "TentativePFactory : bypassing local QR phase" << std::endl;
471  if (NSDim>1)
472  GetOStream(Warnings0) << "TentativePFactor : for nontrivial nullspace, this may degrade performance" << std::endl;
474  // "no-QR" option //
476  // Local Q factor is just the fine nullspace support over the current aggregate.
477  // Local R factor is the identity.
478  // TODO I have not implemented any special handling for aggregates that are too
479  // TODO small to locally support the nullspace, as is done in the standard QR
480  // TODO case above.
481  if (goodMap) {
482  for (GO agg = 0; agg < numAggs; agg++) {
483  const LO aggSize = aggStart[agg+1] - aggStart[agg];
484  Xpetra::global_size_t offset = agg*NSDim;
485 
486  // Process each row in the local Q factor
487  // FIXME: What happens if maps are blocked?
488  for (LO j = 0; j < aggSize; j++) {
489 
490  //TODO Here I do not check for a zero nullspace column on the aggregate.
491  // as is done in the standard QR case.
492 
493  const LO localRow = aggToRowMapLO[aggStart[agg]+j];
494 
495  const size_t rowStart = ia[localRow];
496 
497  for (size_t k = 0, lnnz = 0; k < NSDim; k++) {
498  // Skip zeros (there may be plenty of them, i.e., NSDim > 1 or boundary conditions)
499  const SC qr_jk = fineNS[k][aggToRowMapLO[aggStart[agg]+j]];
500  if (qr_jk != zero) {
501  ja [rowStart+lnnz] = offset + k;
502  val[rowStart+lnnz] = qr_jk;
503  lnnz++;
504  }
505  }
506  }
507  for (size_t j = 0; j < NSDim; j++)
508  coarseNS[j][offset+j] = one;
509  } //for (GO agg = 0; agg < numAggs; agg++)
510 
511  } else {
512  for (GO agg = 0; agg < numAggs; agg++) {
513  const LO aggSize = aggStart[agg+1] - aggStart[agg];
514  Xpetra::global_size_t offset = agg*NSDim;
515  for (LO j = 0; j < aggSize; j++) {
516 
517  const LO localRow = rowMap->getLocalElement(aggToRowMapGO[aggStart[agg]+j]);
518 
519  const size_t rowStart = ia[localRow];
520 
521  for (size_t k = 0, lnnz = 0; k < NSDim; k++) {
522  // Skip zeros (there may be plenty of them, i.e., NSDim > 1 or boundary conditions)
523  const SC qr_jk = fineNS[k][rowMap->getLocalElement(aggToRowMapGO[aggStart[agg]+j])];
524  if (qr_jk != zero) {
525  ja [rowStart+lnnz] = offset + k;
526  val[rowStart+lnnz] = qr_jk;
527  lnnz++;
528  }
529  }
530  }
531  for (size_t j = 0; j < NSDim; j++)
532  coarseNS[j][offset+j] = one;
533  } //for (GO agg = 0; agg < numAggs; agg++)
534 
535  } //if (goodmap) else ...
536 
537  } //if doQRStep ... else
538 
539  // Compress storage (remove all INVALID, which happen when we skip zeros)
540  // We do that in-place
541  size_t ia_tmp = 0, nnz = 0;
542  for (size_t i = 0; i < numRows; i++) {
543  for (size_t j = ia_tmp; j < ia[i+1]; j++)
544  if (ja[j] != INVALID) {
545  ja [nnz] = ja [j];
546  val[nnz] = val[j];
547  nnz++;
548  }
549  ia_tmp = ia[i+1];
550  ia[i+1] = nnz;
551  }
552  if (rowMap->lib() == Xpetra::UseTpetra) {
553  // - Cannot resize for Epetra, as it checks for same pointers
554  // - Need to resize for Tpetra, as it check ().size() == ia[numRows]
555  // NOTE: these invalidate ja and val views
556  jaPtent .resize(nnz);
557  valPtent.resize(nnz);
558  }
559 
560  GetOStream(Runtime1) << "TentativePFactory : aggregates do not cross process boundaries" << std::endl;
561 
562  PtentCrs->setAllValues(iaPtent, jaPtent, valPtent);
563 
564 
565  // Managing labels & constants for ESFC
566  RCP<ParameterList> FCparams;
567  if(pL.isSublist("matrixmatrix: kernel params"))
568  FCparams=rcp(new ParameterList(pL.sublist("matrixmatrix: kernel params")));
569  else
570  FCparams= rcp(new ParameterList);
571  // By default, we don't need global constants for TentativeP
572  FCparams->set("compute global constants",FCparams->get("compute global constants",false));
573  std::string levelIDs = toString(levelID);
574  FCparams->set("Timer Label",std::string("MueLu::TentativeP-")+levelIDs);
575  RCP<const Export> dummy_e;
576  RCP<const Import> dummy_i;
577 
578  PtentCrs->expertStaticFillComplete(coarseMap, A->getDomainMap(),dummy_i,dummy_e,FCparams);
579  }
580 
581  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
584  RCP<const Map> coarseMap, RCP<Matrix>& Ptentative, RCP<MultiVector>& coarseNullspace) const {
585  typedef Teuchos::ScalarTraits<SC> STS;
586  typedef typename STS::magnitudeType Magnitude;
587  const SC zero = STS::zero();
588  const SC one = STS::one();
589 
590  // number of aggregates
591  GO numAggs = aggregates->GetNumAggregates();
592 
593  // Create a lookup table to determine the rows (fine DOFs) that belong to a given aggregate.
594  // aggStart is a pointer into aggToRowMap
595  // aggStart[i]..aggStart[i+1] are indices into aggToRowMap
596  // aggToRowMap[aggStart[i]]..aggToRowMap[aggStart[i+1]-1] are the DOFs in aggregate i
597  ArrayRCP<LO> aggStart;
598  ArrayRCP< GO > aggToRowMap;
599  amalgInfo->UnamalgamateAggregates(*aggregates, aggStart, aggToRowMap);
600 
601  // find size of the largest aggregate
602  LO maxAggSize=0;
603  for (GO i=0; i<numAggs; ++i) {
604  LO sizeOfThisAgg = aggStart[i+1] - aggStart[i];
605  if (sizeOfThisAgg > maxAggSize) maxAggSize = sizeOfThisAgg;
606  }
607 
608  // dimension of fine level nullspace
609  const size_t NSDim = fineNullspace->getNumVectors();
610 
611  // index base for coarse Dof map (usually 0)
612  GO indexBase=A->getRowMap()->getIndexBase();
613 
614  const RCP<const Map> nonUniqueMap = amalgInfo->ComputeUnamalgamatedImportDofMap(*aggregates);
615  const RCP<const Map> uniqueMap = A->getDomainMap();
616  RCP<const Import> importer = ImportFactory::Build(uniqueMap, nonUniqueMap);
617  RCP<MultiVector> fineNullspaceWithOverlap = MultiVectorFactory::Build(nonUniqueMap,NSDim);
618  fineNullspaceWithOverlap->doImport(*fineNullspace,*importer,Xpetra::INSERT);
619 
620  // Pull out the nullspace vectors so that we can have random access.
621  ArrayRCP< ArrayRCP<const SC> > fineNS(NSDim);
622  for (size_t i=0; i<NSDim; ++i)
623  fineNS[i] = fineNullspaceWithOverlap->getData(i);
624 
625  //Allocate storage for the coarse nullspace.
626  coarseNullspace = MultiVectorFactory::Build(coarseMap, NSDim);
627 
628  ArrayRCP< ArrayRCP<SC> > coarseNS(NSDim);
629  for (size_t i=0; i<NSDim; ++i)
630  if (coarseMap->getNodeNumElements() > 0) coarseNS[i] = coarseNullspace->getDataNonConst(i);
631 
632  //This makes the rowmap of Ptent the same as that of A->
633  //This requires moving some parts of some local Q's to other processors
634  //because aggregates can span processors.
635  RCP<const Map > rowMapForPtent = A->getRowMap();
636  const Map& rowMapForPtentRef = *rowMapForPtent;
637 
638  // Set up storage for the rows of the local Qs that belong to other processors.
639  // FIXME This is inefficient and could be done within the main loop below with std::vector's.
640  RCP<const Map> colMap = A->getColMap();
641 
642  RCP<const Map > ghostQMap;
643  RCP<MultiVector> ghostQvalues;
644  Array<RCP<Xpetra::Vector<GO,LO,GO,Node> > > ghostQcolumns;
645  RCP<Xpetra::Vector<GO,LO,GO,Node> > ghostQrowNums;
646  ArrayRCP< ArrayRCP<SC> > ghostQvals;
647  ArrayRCP< ArrayRCP<GO> > ghostQcols;
648  ArrayRCP< GO > ghostQrows;
649 
650  Array<GO> ghostGIDs;
651  for (LO j=0; j<numAggs; ++j) {
652  for (LO k=aggStart[j]; k<aggStart[j+1]; ++k) {
653  if (rowMapForPtentRef.isNodeGlobalElement(aggToRowMap[k]) == false) {
654  ghostGIDs.push_back(aggToRowMap[k]);
655  }
656  }
657  }
658  ghostQMap = MapFactory::Build(A->getRowMap()->lib(),
660  ghostGIDs,
661  indexBase, A->getRowMap()->getComm()); //JG:Xpetra::global_size_t>?
662  //Vector to hold bits of Q that go to other processors.
663  ghostQvalues = MultiVectorFactory::Build(ghostQMap,NSDim);
664  //Note that Epetra does not support MultiVectors templated on Scalar != double.
665  //So to work around this, we allocate an array of Vectors. This shouldn't be too
666  //expensive, as the number of Vectors is NSDim.
667  ghostQcolumns.resize(NSDim);
668  for (size_t i=0; i<NSDim; ++i)
669  ghostQcolumns[i] = Xpetra::VectorFactory<GO,LO,GO,Node>::Build(ghostQMap);
670  ghostQrowNums = Xpetra::VectorFactory<GO,LO,GO,Node>::Build(ghostQMap);
671  if (ghostQvalues->getLocalLength() > 0) {
672  ghostQvals.resize(NSDim);
673  ghostQcols.resize(NSDim);
674  for (size_t i=0; i<NSDim; ++i) {
675  ghostQvals[i] = ghostQvalues->getDataNonConst(i);
676  ghostQcols[i] = ghostQcolumns[i]->getDataNonConst(0);
677  }
678  ghostQrows = ghostQrowNums->getDataNonConst(0);
679  }
680 
681  //importer to handle moving Q
682  importer = ImportFactory::Build(ghostQMap, A->getRowMap());
683 
684  // Dense QR solver
686 
687  //Allocate temporary storage for the tentative prolongator.
688  Array<GO> globalColPtr(maxAggSize*NSDim,0);
689  Array<LO> localColPtr(maxAggSize*NSDim,0);
690  Array<SC> valPtr(maxAggSize*NSDim,0.);
691 
692  //Create column map for Ptent, estimate local #nonzeros in Ptent, and create Ptent itself.
693  const Map& coarseMapRef = *coarseMap;
694 
695  // For the 3-arrays constructor
696  ArrayRCP<size_t> ptent_rowptr;
697  ArrayRCP<LO> ptent_colind;
698  ArrayRCP<Scalar> ptent_values;
699 
700  // Because ArrayRCPs are slow...
701  ArrayView<size_t> rowptr_v;
702  ArrayView<LO> colind_v;
703  ArrayView<Scalar> values_v;
704 
705  // For temporary usage
706  Array<size_t> rowptr_temp;
707  Array<LO> colind_temp;
708  Array<Scalar> values_temp;
709 
710  RCP<CrsMatrix> PtentCrs;
711 
712  RCP<CrsMatrixWrap> PtentCrsWrap = rcp(new CrsMatrixWrap(rowMapForPtent, NSDim, Xpetra::StaticProfile));
713  PtentCrs = PtentCrsWrap->getCrsMatrix();
714  Ptentative = PtentCrsWrap;
715 
716  //*****************************************************************
717  //Loop over all aggregates and calculate local QR decompositions.
718  //*****************************************************************
719  GO qctr=0; //for indexing into Ptent data vectors
720  const Map& nonUniqueMapRef = *nonUniqueMap;
721 
722  size_t total_nnz_count=0;
723 
724  for (GO agg=0; agg<numAggs; ++agg)
725  {
726  LO myAggSize = aggStart[agg+1]-aggStart[agg];
727  // For each aggregate, extract the corresponding piece of the nullspace and put it in the flat array,
728  // "localQR" (in column major format) for the QR routine.
729  Teuchos::SerialDenseMatrix<LO,SC> localQR(myAggSize, NSDim);
730  for (size_t j=0; j<NSDim; ++j) {
731  bool bIsZeroNSColumn = true;
732  for (LO k=0; k<myAggSize; ++k)
733  {
734  // aggToRowMap[aggPtr[i]+k] is the kth DOF in the ith aggregate
735  // fineNS[j][n] is the nth entry in the jth NS vector
736  try{
737  SC nsVal = fineNS[j][ nonUniqueMapRef.getLocalElement(aggToRowMap[aggStart[agg]+k]) ]; // extract information from fine level NS
738  localQR(k,j) = nsVal;
739  if (nsVal != zero) bIsZeroNSColumn = false;
740  }
741  catch(...) {
742  GetOStream(Runtime1,-1) << "length of fine level nsp: " << fineNullspace->getGlobalLength() << std::endl;
743  GetOStream(Runtime1,-1) << "length of fine level nsp w overlap: " << fineNullspaceWithOverlap->getGlobalLength() << std::endl;
744  GetOStream(Runtime1,-1) << "(local?) aggId=" << agg << std::endl;
745  GetOStream(Runtime1,-1) << "aggSize=" << myAggSize << std::endl;
746  GetOStream(Runtime1,-1) << "agg DOF=" << k << std::endl;
747  GetOStream(Runtime1,-1) << "NS vector j=" << j << std::endl;
748  GetOStream(Runtime1,-1) << "j*myAggSize + k = " << j*myAggSize + k << std::endl;
749  GetOStream(Runtime1,-1) << "aggToRowMap["<<agg<<"][" << k << "] = " << aggToRowMap[aggStart[agg]+k] << std::endl;
750  GetOStream(Runtime1,-1) << "id aggToRowMap[agg][k]=" << aggToRowMap[aggStart[agg]+k] << " is global element in nonUniqueMap = " <<
751  nonUniqueMapRef.isNodeGlobalElement(aggToRowMap[aggStart[agg]+k]) << std::endl;
752  GetOStream(Runtime1,-1) << "colMap local id aggToRowMap[agg][k]=" << nonUniqueMapRef.getLocalElement(aggToRowMap[aggStart[agg]+k]) << std::endl;
753  GetOStream(Runtime1,-1) << "fineNS...=" << fineNS[j][ nonUniqueMapRef.getLocalElement(aggToRowMap[aggStart[agg]+k]) ] << std::endl;
754  GetOStream(Errors,-1) << "caught an error!" << std::endl;
755  }
756  } //for (LO k=0 ...
757  TEUCHOS_TEST_FOR_EXCEPTION(bIsZeroNSColumn == true, Exceptions::RuntimeError, "MueLu::TentativePFactory::MakeTentative: fine level NS part has a zero column. Error.");
758  } //for (LO j=0 ...
759 
760  Xpetra::global_size_t offset=agg*NSDim;
761 
762  if(myAggSize >= Teuchos::as<LocalOrdinal>(NSDim)) {
763  // calculate QR decomposition (standard)
764  // R is stored in localQR (size: myAggSize x NSDim)
765 
766  // Householder multiplier
767  SC tau = localQR(0,0);
768 
769  if (NSDim == 1) {
770  // Only one nullspace vector, so normalize by hand
771  Magnitude dtemp=0;
772  for (size_t k = 0; k < Teuchos::as<size_t>(myAggSize); ++k) {
773  Magnitude tmag = STS::magnitude(localQR(k,0));
774  dtemp += tmag*tmag;
775  }
777  tau = localQR(0,0);
778  localQR(0,0) = dtemp;
779  } else {
780  qrSolver.setMatrix( Teuchos::rcp(&localQR, false) );
781  qrSolver.factor();
782  }
783 
784  // Extract R, the coarse nullspace. This is stored in upper triangular part of localQR.
785  // Note: coarseNS[i][.] is the ith coarse nullspace vector, which may be counter to your intuition.
786  // This stores the (offset+k)th entry only if it is local according to the coarseMap.
787  for (size_t j=0; j<NSDim; ++j) {
788  for (size_t k=0; k<=j; ++k) {
789  try {
790  if (coarseMapRef.isNodeLocalElement(offset+k)) {
791  coarseNS[j][offset+k] = localQR(k, j); //TODO is offset+k the correct local ID?!
792  }
793  }
794  catch(...) {
795  GetOStream(Errors,-1) << "caught error in coarseNS insert, j="<<j<<", offset+k = "<<offset+k<<std::endl;
796  }
797  }
798  }
799 
800  // Calculate Q, the tentative prolongator.
801  // The Lapack GEQRF call only works for myAggsize >= NSDim
802 
803  if (NSDim == 1) {
804  // Only one nullspace vector, so calculate Q by hand
805  Magnitude dtemp = Teuchos::ScalarTraits<SC>::magnitude(localQR(0,0));
806  localQR(0,0) = tau;
807  dtemp = 1 / dtemp;
808  for (LocalOrdinal i=0; i<myAggSize; ++i) {
809  localQR(i,0) *= dtemp ;
810  }
811  } else {
812  qrSolver.formQ();
813  Teuchos::RCP<Teuchos::SerialDenseMatrix<LO,SC> > qFactor = qrSolver.getQ();
814  for (size_t j=0; j<NSDim; j++) {
815  for (size_t i = 0; i < Teuchos::as<size_t>(myAggSize); i++) {
816  localQR(i,j) = (*qFactor)(i,j);
817  }
818  }
819  }
820 
821  // end default case (myAggSize >= NSDim)
822  } else { // special handling for myAggSize < NSDim (i.e. 1pt nodes)
823  // See comments for the uncoupled case
824 
825  // R = extended (by adding identity rows) localQR
826  for (size_t j = 0; j < NSDim; j++)
827  for (size_t k = 0; k < NSDim; k++) {
828  TEUCHOS_TEST_FOR_EXCEPTION(!coarseMapRef.isNodeLocalElement(offset+k), Exceptions::RuntimeError,
829  "Caught error in coarseNS insert, j=" << j << ", offset+k = " << offset+k);
830 
831  if (k < as<size_t>(myAggSize))
832  coarseNS[j][offset+k] = localQR(k,j);
833  else
834  coarseNS[j][offset+k] = (k == j ? one : zero);
835  }
836 
837  // Q = I (rectangular)
838  for (size_t i = 0; i < as<size_t>(myAggSize); i++)
839  for (size_t j = 0; j < NSDim; j++)
840  localQR(i,j) = (j == i ? one : zero);
841  } // end else (special handling for 1pt aggregates)
842 
843  //Process each row in the local Q factor. If the row is local to the current processor
844  //according to the rowmap, insert it into Ptentative. Otherwise, save it in ghostQ
845  //to be communicated later to the owning processor.
846  //FIXME -- what happens if maps are blocked?
847  for (GO j=0; j<myAggSize; ++j) {
848  //This loop checks whether row associated with current DOF is local, according to rowMapForPtent.
849  //If it is, the row is inserted. If not, the row number, columns, and values are saved in
850  //MultiVectors that will be sent to other processors.
851  GO globalRow = aggToRowMap[aggStart[agg]+j];
852 
853  //TODO is the use of Xpetra::global_size_t below correct?
854  if (rowMapForPtentRef.isNodeGlobalElement(globalRow) == false ) {
855  ghostQrows[qctr] = globalRow;
856  for (size_t k=0; k<NSDim; ++k) {
857  ghostQcols[k][qctr] = coarseMapRef.getGlobalElement(agg*NSDim+k);
858  ghostQvals[k][qctr] = localQR(j,k);
859  }
860  ++qctr;
861  } else {
862  size_t nnz=0;
863  for (size_t k=0; k<NSDim; ++k) {
864  try{
865  if (localQR(j,k) != Teuchos::ScalarTraits<SC>::zero()) {
866  localColPtr[nnz] = agg * NSDim + k;
867  globalColPtr[nnz] = coarseMapRef.getGlobalElement(localColPtr[nnz]);
868  valPtr[nnz] = localQR(j,k);
869  ++total_nnz_count;
870  ++nnz;
871  }
872  }
873  catch(...) {
874  GetOStream(Errors,-1) << "caught error in colPtr/valPtr insert, current index="<<nnz<<std::endl;
875  }
876  } //for (size_t k=0; k<NSDim; ++k)
877 
878  try{
879  Ptentative->insertGlobalValues(globalRow,globalColPtr.view(0,nnz),valPtr.view(0,nnz));
880  }
881  catch(...) {
882  GetOStream(Errors,-1) << "pid " << A->getRowMap()->getComm()->getRank()
883  << "caught error during Ptent row insertion, global row "
884  << globalRow << std::endl;
885  }
886  }
887  } //for (GO j=0; j<myAggSize; ++j)
888 
889  } // for (LO agg=0; agg<numAggs; ++agg)
890 
891 
892  // ***********************************************************
893  // ************* end of aggregate-wise QR ********************
894  // ***********************************************************
895  GetOStream(Runtime1) << "TentativePFactory : aggregates may cross process boundaries" << std::endl;
896  // Import ghost parts of Q factors and insert into Ptentative.
897  // First import just the global row numbers.
899  targetQrowNums->putScalar(-1);
900  targetQrowNums->doImport(*ghostQrowNums,*importer,Xpetra::INSERT);
901  ArrayRCP< GO > targetQrows = targetQrowNums->getDataNonConst(0);
902 
903  // Now create map based on just the row numbers imported.
904  Array<GO> gidsToImport;
905  gidsToImport.reserve(targetQrows.size());
906  for (typename ArrayRCP<GO>::iterator r=targetQrows.begin(); r!=targetQrows.end(); ++r) {
907  if (*r > -1) {
908  gidsToImport.push_back(*r);
909  }
910  }
911  RCP<const Map > reducedMap = MapFactory::Build( A->getRowMap()->lib(),
913  gidsToImport, indexBase, A->getRowMap()->getComm() );
914 
915  // Import using the row numbers that this processor will receive.
916  importer = ImportFactory::Build(ghostQMap, reducedMap);
917 
918  Array<RCP<Xpetra::Vector<GO,LO,GO,Node> > > targetQcolumns(NSDim);
919  for (size_t i=0; i<NSDim; ++i) {
920  targetQcolumns[i] = Xpetra::VectorFactory<GO,LO,GO,Node>::Build(reducedMap);
921  targetQcolumns[i]->doImport(*(ghostQcolumns[i]),*importer,Xpetra::INSERT);
922  }
923  RCP<MultiVector> targetQvalues = MultiVectorFactory::Build(reducedMap,NSDim);
924  targetQvalues->doImport(*ghostQvalues,*importer,Xpetra::INSERT);
925 
926  ArrayRCP< ArrayRCP<SC> > targetQvals;
927  ArrayRCP<ArrayRCP<GO> > targetQcols;
928  if (targetQvalues->getLocalLength() > 0) {
929  targetQvals.resize(NSDim);
930  targetQcols.resize(NSDim);
931  for (size_t i=0; i<NSDim; ++i) {
932  targetQvals[i] = targetQvalues->getDataNonConst(i);
933  targetQcols[i] = targetQcolumns[i]->getDataNonConst(0);
934  }
935  }
936 
937  valPtr = Array<SC>(NSDim,0.);
938  globalColPtr = Array<GO>(NSDim,0);
939  for (typename Array<GO>::iterator r=gidsToImport.begin(); r!=gidsToImport.end(); ++r) {
940  if (targetQvalues->getLocalLength() > 0) {
941  for (size_t j=0; j<NSDim; ++j) {
942  valPtr[j] = targetQvals[j][reducedMap->getLocalElement(*r)];
943  globalColPtr[j] = targetQcols[j][reducedMap->getLocalElement(*r)];
944  }
945  Ptentative->insertGlobalValues(*r, globalColPtr.view(0,NSDim), valPtr.view(0,NSDim));
946  } //if (targetQvalues->getLocalLength() > 0)
947  }
948 
949  Ptentative->fillComplete(coarseMap, A->getDomainMap());
950  }
951 
952  template <class Scalar,class LocalOrdinal, class GlobalOrdinal, class Node>
953  bool TentativePFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node>::isGoodMap(const Map& rowMap, const Map& colMap) const {
954  ArrayView<const GO> rowElements = rowMap.getNodeElementList();
955  ArrayView<const GO> colElements = colMap.getNodeElementList();
956 
957  const size_t numElements = rowElements.size();
958 
959  bool goodMap = true;
960  for (size_t i = 0; i < numElements; i++)
961  if (rowElements[i] != colElements[i]) {
962  goodMap = false;
963  break;
964  }
965 
966  return goodMap;
967  }
968 
969 } //namespace MueLu
970 
971 // TODO ReUse: If only P or Nullspace is missing, TentativePFactory can be smart and skip part of the computation.
972 
973 #define MUELU_TENTATIVEPFACTORY_SHORT
974 #endif // MUELU_TENTATIVEPFACTORY_DEF_HPP
void BuildPuncoupled(RCP< Matrix > A, RCP< Aggregates > aggregates, RCP< AmalgamationInfo > amalgInfo, RCP< MultiVector > fineNullspace, RCP< const Map > coarseMap, RCP< Matrix > &Ptentative, RCP< MultiVector > &coarseNullspace, const int levelID) const
void Build(Level &fineLevel, Level &coarseLevel) const
Build an object with this factory.
Important warning messages (one line)
void reserve(size_type n)
MueLu::DefaultLocalOrdinal LocalOrdinal
int setMatrix(const RCP< SerialDenseMatrix< OrdinalType, ScalarType > > &A)
void BuildPcoupled(RCP< Matrix > A, RCP< Aggregates > aggregates, RCP< AmalgamationInfo > amalgInfo, RCP< MultiVector > fineNullspace, RCP< const Map > coarseMap, RCP< Matrix > &Ptentative, RCP< MultiVector > &coarseNullspace) const
std::string toString(const T &what)
Little helper function to convert non-string types to strings.
RCP< const ParameterList > GetValidParameterList() const
Return a const parameter list of valid parameters that setParameterList() will accept.
void DeclareInput(Level &fineLevel, Level &coarseLevel) const
Input.
GlobalOrdinal GO
T & get(const std::string &name, T def_value)
void UnamalgamateAggregates(const Aggregates &aggregates, Teuchos::ArrayRCP< LocalOrdinal > &aggStart, Teuchos::ArrayRCP< GlobalOrdinal > &aggToRowMap) const
UnamalgamateAggregates.
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
ArrayView< T > view(size_type offset, size_type size)
static T squareroot(T x)
Timer to be used in factories. Similar to Monitor but with additional timers.
#define TEUCHOS_TEST_FOR_EXCEPTION(throw_exception_test, Exception, msg)
size_type size() const
void UnamalgamateAggregatesLO(const Aggregates &aggregates, Teuchos::ArrayRCP< LocalOrdinal > &aggStart, Teuchos::ArrayRCP< LO > &aggToRowMap) const
LocalOrdinal LO
size_type size() const
static const NoFactory * get()
Print even more statistics.
#define SET_VALID_ENTRY(name)
void resize(const size_type n, const T &val=T())
bool isParameter(const std::string &name) const
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
Class that holds all level-specific information.
Definition: MueLu_Level.hpp:99
Teuchos::RCP< Xpetra::Map< LocalOrdinal, GlobalOrdinal, Node > > ComputeUnamalgamatedImportDofMap(const Aggregates &aggregates) const
ComputeUnamalgamatedImportDofMap build overlapping dof row map from aggregates needed for overlapping...
bool isSublist(const std::string &name) const
LO GetNumAggregates() const
returns the number of aggregates of the current processor. Note: could/should be renamed to GetNumLoc...
void resize(size_type new_size, const value_type &x=value_type())
static std::string PrintMatrixInfo(const Matrix &A, const std::string &msgTag, RCP< const Teuchos::ParameterList > params=Teuchos::null)
size_t global_size_t
static bool isnaninf(const T &x)
static RCP< Vector > Build(const Teuchos::RCP< const Map > &map, bool zeroOut=true)
bool isGoodMap(const Map &rowMap, const Map &colMap) const
iterator end()
static magnitudeType magnitude(T a)
void push_back(const value_type &x)
Scalar SC
ParameterList & sublist(const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
int GetLevelID() const
Return level number.
Definition: MueLu_Level.cpp:76
RCP< SerialDenseMatrix< OrdinalType, ScalarType > > getQ() const
Exception throws to report errors in the internal logical of the program.
iterator end() const
void BuildP(Level &fineLevel, Level &coarseLevel) const
Abstract Build method.
Description of what is happening (more verbose)
iterator begin()
iterator begin() const
bool IsAvailable(const std::string &ename, const FactoryBase *factory=NoFactory::get()) const
Test whether a need&#39;s value has been saved.