EpetraExt
Development
|
PDE-constrained inverse problem based on a 2D discretization of a diffusion/reaction system. More...
#include <GLpApp_AdvDiffReactOptModel.hpp>
Public Member Functions | |
AdvDiffReactOptModel (const Teuchos::RCP< const Epetra_Comm > &comm, const double beta, const double len_x, const double len_y, const int local_nx, const int local_ny, const char meshFile[], const int np, const double x0, const double p0, const double reactionRate, const bool normalizeBasis, const bool supportDerivatives) | |
Constructor. More... | |
void | set_q (Teuchos::RCP< const Epetra_Vector > const &q) |
Teuchos::RCP < GLpApp::GLpYUEpetraDataPool > | getDataPool () |
Teuchos::RCP< const Epetra_MultiVector > | get_B_bar () const |
Public Member Functions inherited from EpetraExt::ModelEvaluator | |
virtual | ~ModelEvaluator () |
virtual Teuchos::RCP< const Teuchos::Array< std::string > > | get_p_names (int l) const |
Get the names of the parameters associated with parameter subvector l if available. More... | |
virtual Teuchos::ArrayView < const std::string > | get_g_names (int j) const |
Get the names of the response functions associated with response subvector j if available. More... | |
virtual Teuchos::RCP< const Epetra_Vector > | get_x_dot_init () const |
virtual Teuchos::RCP< const Epetra_Vector > | get_x_dotdot_init () const |
virtual double | get_t_init () const |
virtual double | getInfBound () const |
Return the value of an infinite bound. More... | |
virtual double | get_t_lower_bound () const |
virtual double | get_t_upper_bound () const |
virtual Teuchos::RCP < EpetraExt::ModelEvaluator::Preconditioner > | create_WPrec () const |
virtual Teuchos::RCP < Epetra_Operator > | create_DgDx_dot_op (int j) const |
virtual Teuchos::RCP < Epetra_Operator > | create_DgDx_dotdot_op (int j) const |
virtual Teuchos::RCP < Epetra_Operator > | create_DgDx_op (int j) const |
virtual Teuchos::RCP < Epetra_Operator > | create_DgDp_op (int j, int l) const |
Overridden from EpetraExt::ModelEvaluator . | |
Teuchos::RCP< const Epetra_Map > | get_x_map () const |
Teuchos::RCP< const Epetra_Map > | get_f_map () const |
Teuchos::RCP< const Epetra_Map > | get_p_map (int l) const |
. More... | |
Teuchos::RCP< const Epetra_Map > | get_g_map (int j) const |
. More... | |
Teuchos::RCP< const Epetra_Vector > | get_x_init () const |
Teuchos::RCP< const Epetra_Vector > | get_p_init (int l) const |
Teuchos::RCP< const Epetra_Vector > | get_x_lower_bounds () const |
Teuchos::RCP< const Epetra_Vector > | get_x_upper_bounds () const |
Teuchos::RCP< const Epetra_Vector > | get_p_lower_bounds (int l) const |
Teuchos::RCP< const Epetra_Vector > | get_p_upper_bounds (int l) const |
Teuchos::RCP< Epetra_Operator > | create_W () const |
Teuchos::RCP< Epetra_Operator > | create_DfDp_op (int l) const |
InArgs | createInArgs () const |
OutArgs | createOutArgs () const |
void | evalModel (const InArgs &inArgs, const OutArgs &outArgs) const |
PDE-constrained inverse problem based on a 2D discretization of a diffusion/reaction system.
The model evaluator subclass is used to represent the simulation-constrained optimization problem:
min g(x,p) s.t. f(x,p) = 0;
where:
x
is the vector of discretized concentations of the species in the 2D domain.
p
is the global vector of coefficients of a sine series basis (see B_bar
below).
f(x,p) = A*x + reationRate*Ny(x) + B*(B_bar*p)
is the discretized 2D diffusion/reaction PDE.
g(x,p) = 0.5 * (x-q)'H(x-q) + 0.5*regBeta*(B_bar*p)'R(B_bar*p)
is the least squares objective function.
A
is the discretized Laplacian operator for the diffusion part of the PDE state equation. This matrix is constant, square and singular.
B
is the sensitivity of the flux boundary conditions. This is a constant rectangular matrix.
B_bar
are the sine series coefficients with a column dimension of np
.
Ny(x)
is the nonlinear terms for the discretized reaction over the 2D domain.
reactionRate
is the relative reaction rate which must take on a non-zero value to form a solvable problem.
H
is the symmetric positive definite mass matrix for the problem (i.e. the discretization of the inner product operator over the 2D domain).
q
is a matching or target vector for the state x
over the 2D domain of the problem.
R
is the symmetric positive definite discretization of the inner product of the flux function over the boundary of the 2D domain.
regBeta
is a regularization parameter that must be greater than zero.
The nuts and bolts of the implementation for this problem are contained in the C++ class GLpApp::GLpYUEpetraDataPool
that was originally implemented by Denis Ridzal while a student at Rice University. The class GLpApp::GLpYUEpetraDataPool
implements the basic operators and nonlinear functions but this class puts them together to form a valid the model in terms of a model evaluator interface.
This example problem demonstrates a few different aspects of the EpetraExt::ModelEvaluator
interface:
How to manage parallel vector data. The state variables in x
are managed as fully distributed parallel data while the flux sine-series parameter coefficients p
are managed as locally replicated data.
Demonstrates shared compuation between the objective function
g(x,p)
and the simulation equality constraints f(x,p)
and their derivatives. The intermediate vector B_bar*p
is computed only once and is shared with the computation of g
and f
. The intermediate vector R*(B_bar*p)
is computed once and shared between the computation of g
and DgDp
.
The functions
AdvDiffReactOptModel()
createInArgs()
, createOutArgs()
and evalModel()
are fairly cleanly written and are appropriate to be studied in order to show how to implement other parallel simulation-constrained problems based on Epetra objects.
The mesh for the 2D domain can either be read in as a mesh data file give the files name or can be generated automatically on a square 2D domain.
The program
triangle
can be used to generate meshes for arbitary 2D geometries and then metis
can be used to partition the mesh to multiple domains. Instructions for how to use triangle
and metis
to generate meshes is described ???here???.
Instead of reading in a mesh file, a square 2D mesh can be automatically generated given just the length in the
x
and y
directions and the number of local elements in each direction. Currently, the square mesh is only partitioned in the x
direction and therefore will not demonstrate great parallel scalability for large numbers of processors due to excessive amounts of shared boundary between processes.
ToDo: Finish Documentation!
Definition at line 162 of file GLpApp_AdvDiffReactOptModel.hpp.
GLpApp::AdvDiffReactOptModel::AdvDiffReactOptModel | ( | const Teuchos::RCP< const Epetra_Comm > & | comm, |
const double | beta, | ||
const double | len_x, | ||
const double | len_y, | ||
const int | local_nx, | ||
const int | local_ny, | ||
const char | meshFile[], | ||
const int | np, | ||
const double | x0, | ||
const double | p0, | ||
const double | reactionRate, | ||
const bool | normalizeBasis, | ||
const bool | supportDerivatives | ||
) |
Constructor.
Definition at line 95 of file GLpApp_AdvDiffReactOptModel.cpp.
void GLpApp::AdvDiffReactOptModel::set_q | ( | Teuchos::RCP< const Epetra_Vector > const & | q | ) |
Definition at line 246 of file GLpApp_AdvDiffReactOptModel.cpp.
Teuchos::RCP< GLpApp::GLpYUEpetraDataPool > GLpApp::AdvDiffReactOptModel::getDataPool | ( | ) |
Definition at line 259 of file GLpApp_AdvDiffReactOptModel.cpp.
Teuchos::RCP< const Epetra_MultiVector > GLpApp::AdvDiffReactOptModel::get_B_bar | ( | ) | const |
Definition at line 265 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Implements EpetraExt::ModelEvaluator.
Definition at line 273 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Implements EpetraExt::ModelEvaluator.
Definition at line 279 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
.
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 285 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
.
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 292 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 299 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 305 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 312 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 318 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 324 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 331 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 338 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Reimplemented from EpetraExt::ModelEvaluator.
Definition at line 344 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Implements EpetraExt::ModelEvaluator.
Definition at line 352 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Implements EpetraExt::ModelEvaluator.
Definition at line 362 of file GLpApp_AdvDiffReactOptModel.cpp.
|
virtual |
Implements EpetraExt::ModelEvaluator.
Definition at line 411 of file GLpApp_AdvDiffReactOptModel.cpp.