Epetra_SerialSpdDenseSolver: A class for constructing and using symmetric positive definite dense matrices. More...
#include <Epetra_SerialSpdDenseSolver.h>
Public Member Functions | |
Constructor/Destructor Methods | |
Epetra_SerialSpdDenseSolver () | |
Default constructor; matrix should be set using SetMatrix(), LHS and RHS set with SetVectors(). | |
virtual | ~Epetra_SerialSpdDenseSolver () |
Epetra_SerialDenseSolver destructor. | |
Set Methods | |
int | SetMatrix (Epetra_SerialSymDenseMatrix &A_in) |
Sets the pointers for coefficient matrix; special version for symmetric matrices. | |
Factor/Solve/Invert Methods | |
int | Factor (void) |
Computes the in-place Cholesky factorization of the matrix using the LAPACK routine DPOTRF. More... | |
int | Solve (void) |
Computes the solution X to AX = B for the this matrix and the B provided to SetVectors().. More... | |
int | Invert (void) |
Inverts the this matrix. More... | |
int | ComputeEquilibrateScaling (void) |
Computes the scaling vector S(i) = 1/sqrt(A(i,i) of the this matrix. More... | |
int | EquilibrateMatrix (void) |
Equilibrates the this matrix. More... | |
int | EquilibrateRHS (void) |
Equilibrates the current RHS. More... | |
int | ApplyRefinement (void) |
Apply Iterative Refinement. More... | |
int | UnequilibrateLHS (void) |
Unscales the solution vectors if equilibration was used to solve the system. More... | |
int | ReciprocalConditionEstimate (double &Value) |
Returns the reciprocal of the 1-norm condition number of the this matrix. More... | |
Query methods | |
bool | ShouldEquilibrate () |
Returns true if the LAPACK general rules for equilibration suggest you should equilibrate the system. | |
Data Accessor methods | |
Epetra_SerialSymDenseMatrix * | SymMatrix () const |
Returns pointer to current matrix. | |
Epetra_SerialSymDenseMatrix * | SymFactoredMatrix () const |
Returns pointer to factored matrix (assuming factorization has been performed). | |
double | SCOND () |
Ratio of smallest to largest equilibration scale factors for the this matrix (returns -1 if not yet computed). More... | |
double | AMAX () |
Returns the absolute value of the largest entry of the this matrix (returns -1 if not yet computed). | |
Public Member Functions inherited from Epetra_SerialDenseSolver | |
Epetra_SerialDenseSolver () | |
Default constructor; matrix should be set using SetMatrix(), LHS and RHS set with SetVectors(). | |
virtual | ~Epetra_SerialDenseSolver () |
Epetra_SerialDenseSolver destructor. | |
int | SetMatrix (Epetra_SerialDenseMatrix &A) |
Sets the pointers for coefficient matrix. | |
int | SetVectors (Epetra_SerialDenseMatrix &X, Epetra_SerialDenseMatrix &B) |
Sets the pointers for left and right hand side vector(s). More... | |
void | FactorWithEquilibration (bool Flag) |
Causes equilibration to be called just before the matrix factorization as part of the call to Factor. More... | |
void | SolveWithTranspose (bool Flag) |
If Flag is true, causes all subsequent function calls to work with the transpose of this matrix, otherwise not. | |
void | SolveToRefinedSolution (bool Flag) |
Causes all solves to compute solution to best ability using iterative refinement. | |
void | EstimateSolutionErrors (bool Flag) |
Causes all solves to estimate the forward and backward solution error. More... | |
int | EquilibrateRHS (void) |
Equilibrates the current RHS. More... | |
int | UnequilibrateLHS (void) |
Unscales the solution vectors if equilibration was used to solve the system. More... | |
bool | Transpose () |
Returns true if transpose of this matrix has and will be used. | |
bool | Factored () |
Returns true if matrix is factored (factor available via AF() and LDAF()). | |
bool | A_Equilibrated () |
Returns true if factor is equilibrated (factor available via AF() and LDAF()). | |
bool | B_Equilibrated () |
Returns true if RHS is equilibrated (RHS available via B() and LDB()). | |
bool | SolutionErrorsEstimated () |
Returns true if forward and backward error estimated have been computed (available via FERR() and BERR()). | |
bool | Inverted () |
Returns true if matrix inverse has been computed (inverse available via AF() and LDAF()). | |
bool | ReciprocalConditionEstimated () |
Returns true if the condition number of the this matrix has been computed (value available via ReciprocalConditionEstimate()). | |
bool | Solved () |
Returns true if the current set of vectors has been solved. | |
bool | SolutionRefined () |
Returns true if the current set of vectors has been refined. | |
Epetra_SerialDenseMatrix * | Matrix () const |
Returns pointer to current matrix. | |
Epetra_SerialDenseMatrix * | FactoredMatrix () const |
Returns pointer to factored matrix (assuming factorization has been performed). | |
Epetra_SerialDenseMatrix * | LHS () const |
Returns pointer to current LHS. | |
Epetra_SerialDenseMatrix * | RHS () const |
Returns pointer to current RHS. | |
int | M () const |
Returns row dimension of system. | |
int | N () const |
Returns column dimension of system. | |
double * | A () const |
Returns pointer to the this matrix. | |
int | LDA () const |
Returns the leading dimension of the this matrix. | |
double * | B () const |
Returns pointer to current RHS. | |
int | LDB () const |
Returns the leading dimension of the RHS. | |
int | NRHS () const |
Returns the number of current right hand sides and solution vectors. | |
double * | X () const |
Returns pointer to current solution. | |
int | LDX () const |
Returns the leading dimension of the solution. | |
double * | AF () const |
Returns pointer to the factored matrix (may be the same as A() if factorization done in place). | |
int | LDAF () const |
Returns the leading dimension of the factored matrix. | |
int * | IPIV () const |
Returns pointer to pivot vector (if factorization has been computed), zero otherwise. | |
double | ANORM () const |
Returns the 1-Norm of the this matrix (returns -1 if not yet computed). | |
double | RCOND () const |
Returns the reciprocal of the condition number of the this matrix (returns -1 if not yet computed). | |
double | ROWCND () const |
Ratio of smallest to largest row scale factors for the this matrix (returns -1 if not yet computed). More... | |
double | COLCND () const |
Ratio of smallest to largest column scale factors for the this matrix (returns -1 if not yet computed). More... | |
double | AMAX () const |
Returns the absolute value of the largest entry of the this matrix (returns -1 if not yet computed). | |
double * | FERR () const |
Returns a pointer to the forward error estimates computed by LAPACK. | |
double * | BERR () const |
Returns a pointer to the backward error estimates computed by LAPACK. | |
double * | R () const |
Returns a pointer to the row scaling vector used for equilibration. | |
double * | C () const |
Returns a pointer to the column scale vector used for equilibration. | |
virtual void | Print (std::ostream &os) const |
Print service methods; defines behavior of ostream << operator. | |
Public Member Functions inherited from Epetra_CompObject | |
Epetra_CompObject & | operator= (const Epetra_CompObject &src) |
Epetra_CompObject () | |
Basic Epetra_CompObject constuctor. | |
Epetra_CompObject (const Epetra_CompObject &Source) | |
Epetra_CompObject copy constructor. | |
virtual | ~Epetra_CompObject () |
Epetra_CompObject destructor. | |
void | SetFlopCounter (const Epetra_Flops &FlopCounter_in) |
Set the internal Epetra_Flops() pointer. | |
void | SetFlopCounter (const Epetra_CompObject &CompObject) |
Set the internal Epetra_Flops() pointer to the flop counter of another Epetra_CompObject. | |
void | UnsetFlopCounter () |
Set the internal Epetra_Flops() pointer to 0 (no flops counted). | |
Epetra_Flops * | GetFlopCounter () const |
Get the pointer to the Epetra_Flops() object associated with this object, returns 0 if none. | |
void | ResetFlops () const |
Resets the number of floating point operations to zero for this multi-vector. | |
double | Flops () const |
Returns the number of floating point operations with this multi-vector. | |
void | UpdateFlops (int Flops_in) const |
Increment Flop count for this object. | |
void | UpdateFlops (long int Flops_in) const |
Increment Flop count for this object. | |
void | UpdateFlops (long long Flops_in) const |
Increment Flop count for this object. | |
void | UpdateFlops (double Flops_in) const |
Increment Flop count for this object. | |
void | UpdateFlops (float Flops_in) const |
Increment Flop count for this object. | |
Public Member Functions inherited from Epetra_BLAS | |
Epetra_BLAS (void) | |
Epetra_BLAS Constructor. More... | |
Epetra_BLAS (const Epetra_BLAS &BLAS) | |
Epetra_BLAS Copy Constructor. More... | |
virtual | ~Epetra_BLAS (void) |
Epetra_BLAS Destructor. | |
float | ASUM (const int N, const float *X, const int INCX=1) const |
Epetra_BLAS one norm function (SASUM). | |
double | ASUM (const int N, const double *X, const int INCX=1) const |
Epetra_BLAS one norm function (DASUM). | |
float | DOT (const int N, const float *X, const float *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS dot product function (SDOT). | |
double | DOT (const int N, const double *X, const double *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS dot product function (DDOT). | |
float | NRM2 (const int N, const float *X, const int INCX=1) const |
Epetra_BLAS norm function (SNRM2). | |
double | NRM2 (const int N, const double *X, const int INCX=1) const |
Epetra_BLAS norm function (DNRM2). | |
void | SCAL (const int N, const float ALPHA, float *X, const int INCX=1) const |
Epetra_BLAS vector scale function (SSCAL) | |
void | SCAL (const int N, const double ALPHA, double *X, const int INCX=1) const |
Epetra_BLAS vector scale function (DSCAL) | |
void | COPY (const int N, const float *X, float *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS vector copy function (SCOPY) | |
void | COPY (const int N, const double *X, double *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS vector scale function (DCOPY) | |
int | IAMAX (const int N, const float *X, const int INCX=1) const |
Epetra_BLAS arg maximum of absolute value function (ISAMAX) | |
int | IAMAX (const int N, const double *X, const int INCX=1) const |
Epetra_BLAS arg maximum of absolute value function (IDAMAX) | |
void | AXPY (const int N, const float ALPHA, const float *X, float *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS vector update function (SAXPY) | |
void | AXPY (const int N, const double ALPHA, const double *X, double *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS vector update function (DAXPY) | |
void | GEMV (const char TRANS, const int M, const int N, const float ALPHA, const float *A, const int LDA, const float *X, const float BETA, float *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS matrix-vector multiply function (SGEMV) | |
void | GEMV (const char TRANS, const int M, const int N, const double ALPHA, const double *A, const int LDA, const double *X, const double BETA, double *Y, const int INCX=1, const int INCY=1) const |
Epetra_BLAS matrix-vector multiply function (DGEMV) | |
void | GEMM (const char TRANSA, const char TRANSB, const int M, const int N, const int K, const float ALPHA, const float *A, const int LDA, const float *B, const int LDB, const float BETA, float *C, const int LDC) const |
Epetra_BLAS matrix-matrix multiply function (SGEMM) | |
void | GEMM (const char TRANSA, const char TRANSB, const int M, const int N, const int K, const double ALPHA, const double *A, const int LDA, const double *B, const int LDB, const double BETA, double *C, const int LDC) const |
Epetra_BLAS matrix-matrix multiply function (DGEMM) | |
void | SYMM (const char SIDE, const char UPLO, const int M, const int N, const float ALPHA, const float *A, const int LDA, const float *B, const int LDB, const float BETA, float *C, const int LDC) const |
Epetra_BLAS symmetric matrix-matrix multiply function (SSYMM) | |
void | SYMM (const char SIDE, const char UPLO, const int M, const int N, const double ALPHA, const double *A, const int LDA, const double *B, const int LDB, const double BETA, double *C, const int LDC) const |
Epetra_BLAS matrix-matrix multiply function (DSYMM) | |
void | TRMM (const char SIDE, const char UPLO, const char TRANSA, const char DIAG, const int M, const int N, const float ALPHA, const float *A, const int LDA, float *B, const int LDB) const |
Epetra_BLAS triangular matrix-matrix multiply function (STRMM) | |
void | TRMM (const char SIDE, const char UPLO, const char TRANSA, const char DIAG, const int M, const int N, const double ALPHA, const double *A, const int LDA, double *B, const int LDB) const |
Epetra_BLAS triangular matrix-matrix multiply function (DTRMM) | |
void | SYRK (const char UPLO, const char TRANS, const int N, const int K, const float ALPHA, const float *A, const int LDA, const float BETA, float *C, const int LDC) const |
Eperta_BLAS symetric rank k funtion (ssyrk) | |
void | SYRK (const char UPLO, const char TRANS, const int N, const int K, const double ALPHA, const double *A, const int LDA, const double BETA, double *C, const int LDC) const |
Eperta_BLAS symetric rank k funtion (dsyrk) | |
Public Member Functions inherited from Epetra_LAPACK | |
Epetra_LAPACK (void) | |
Epetra_LAPACK Constructor. More... | |
Epetra_LAPACK (const Epetra_LAPACK &LAPACK) | |
Epetra_LAPACK Copy Constructor. More... | |
virtual | ~Epetra_LAPACK (void) |
Epetra_LAPACK Destructor. | |
void | POTRF (const char UPLO, const int N, float *A, const int LDA, int *INFO) const |
Epetra_LAPACK factorization for positive definite matrix (SPOTRF) | |
void | POTRF (const char UPLO, const int N, double *A, const int LDA, int *INFO) const |
Epetra_LAPACK factorization for positive definite matrix (DPOTRF) | |
void | POTRS (const char UPLO, const int N, const int NRHS, const float *A, const int LDA, float *X, const int LDX, int *INFO) const |
Epetra_LAPACK solve (after factorization) for positive definite matrix (SPOTRS) | |
void | POTRS (const char UPLO, const int N, const int NRHS, const double *A, const int LDA, double *X, const int LDX, int *INFO) const |
Epetra_LAPACK solve (after factorization) for positive definite matrix (DPOTRS) | |
void | POTRI (const char UPLO, const int N, float *A, const int LDA, int *INFO) const |
Epetra_LAPACK inversion for positive definite matrix (SPOTRI) | |
void | POTRI (const char UPLO, const int N, double *A, const int LDA, int *INFO) const |
Epetra_LAPACK inversion for positive definite matrix (DPOTRI) | |
void | POCON (const char UPLO, const int N, const float *A, const int LDA, const float ANORM, float *RCOND, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK condition number estimator for positive definite matrix (SPOCON) | |
void | POCON (const char UPLO, const int N, const double *A, const int LDA, const double ANORM, double *RCOND, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK condition number estimator for positive definite matrix (DPOCON) | |
void | POSV (const char UPLO, const int N, const int NRHS, float *A, const int LDA, float *X, const int LDX, int *INFO) const |
Epetra_LAPACK factor and solve for positive definite matrix (SPOSV) | |
void | POSV (const char UPLO, const int N, const int NRHS, double *A, const int LDA, double *X, const int LDX, int *INFO) const |
Epetra_LAPACK factor and solve for positive definite matrix (DPOSV) | |
void | POEQU (const int N, const float *A, const int LDA, float *S, float *SCOND, float *AMAX, int *INFO) const |
Epetra_LAPACK equilibration for positive definite matrix (SPOEQU) | |
void | POEQU (const int N, const double *A, const int LDA, double *S, double *SCOND, double *AMAX, int *INFO) const |
Epetra_LAPACK equilibration for positive definite matrix (DPOEQU) | |
void | PORFS (const char UPLO, const int N, const int NRHS, const float *A, const int LDA, const float *AF, const int LDAF, const float *B, const int LDB, float *X, const int LDX, float *FERR, float *BERR, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for positive definite matrix (SPOSVX) | |
void | PORFS (const char UPLO, const int N, const int NRHS, const double *A, const int LDA, const double *AF, const int LDAF, const double *B, const int LDB, double *X, const int LDX, double *FERR, double *BERR, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for positive definite matrix (DPOSVX) | |
void | POSVX (const char FACT, const char UPLO, const int N, const int NRHS, float *A, const int LDA, float *AF, const int LDAF, const char EQUED, float *S, float *B, const int LDB, float *X, const int LDX, float *RCOND, float *FERR, float *BERR, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for positive definite matrix (SPOSVX) | |
void | POSVX (const char FACT, const char UPLO, const int N, const int NRHS, double *A, const int LDA, double *AF, const int LDAF, const char EQUED, double *S, double *B, const int LDB, double *X, const int LDX, double *RCOND, double *FERR, double *BERR, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for positive definite matrix (DPOSVX) | |
void | GELS (const char TRANS, const int M, const int N, const int NRHS, double *A, const int LDA, double *B, const int LDB, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK simple driver to solve least-squares systems. | |
void | GETRF (const int M, const int N, float *A, const int LDA, int *IPIV, int *INFO) const |
Epetra_LAPACK factorization for general matrix (SGETRF) | |
void | GETRF (const int M, const int N, double *A, const int LDA, int *IPIV, int *INFO) const |
Epetra_LAPACK factorization for general matrix (DGETRF) | |
void | GEQRF (const int M, const int N, float *A, const int LDA, float *TAU, float *WORK, const int lwork, int *INFO) const |
Epetra_LAPACK QR factorization for general matrix (SGEQRF) | |
void | GEQRF (const int M, const int N, double *A, const int LDA, double *TAU, double *WORK, const int lwork, int *INFO) const |
Epetra_LAPACK factorization for general matrix (DGEQRF) | |
void | GETRS (const char TRANS, const int N, const int NRHS, const float *A, const int LDA, const int *IPIV, float *X, const int LDX, int *INFO) const |
Epetra_LAPACK solve (after factorization) for general matrix (SGETRS) | |
void | GETRS (const char TRANS, const int N, const int NRHS, const double *A, const int LDA, const int *IPIV, double *X, const int LDX, int *INFO) const |
Epetra_LAPACK solve (after factorization) for general matrix (DGETRS) | |
void | GETRI (const int N, float *A, const int LDA, int *IPIV, float *WORK, const int *LWORK, int *INFO) const |
Epetra_LAPACK inversion for general matrix (SGETRI) | |
void | GETRI (const int N, double *A, const int LDA, int *IPIV, double *WORK, const int *LWORK, int *INFO) const |
Epetra_LAPACK inversion for general matrix (DGETRI) | |
void | GECON (const char NORM, const int N, const float *A, const int LDA, const float ANORM, float *RCOND, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK condition number estimator for general matrix (SGECON) | |
void | GECON (const char NORM, const int N, const double *A, const int LDA, const double ANORM, double *RCOND, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK condition number estimator for general matrix (DGECON) | |
void | GESV (const int N, const int NRHS, float *A, const int LDA, int *IPIV, float *X, const int LDX, int *INFO) const |
Epetra_LAPACK factor and solve for general matrix (SGESV) | |
void | GESV (const int N, const int NRHS, double *A, const int LDA, int *IPIV, double *X, const int LDX, int *INFO) const |
Epetra_LAPACK factor and solve for general matrix (DGESV) | |
void | GEEQU (const int M, const int N, const float *A, const int LDA, float *R, float *C, float *ROWCND, float *COLCND, float *AMAX, int *INFO) const |
Epetra_LAPACK equilibration for general matrix (SGEEQU) | |
void | GEEQU (const int M, const int N, const double *A, const int LDA, double *R, double *C, double *ROWCND, double *COLCND, double *AMAX, int *INFO) const |
Epetra_LAPACK equilibration for general matrix (DGEEQU) | |
void | GERFS (const char TRANS, const int N, const int NRHS, const float *A, const int LDA, const float *AF, const int LDAF, const int *IPIV, const float *B, const int LDB, float *X, const int LDX, float *FERR, float *BERR, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK Refine solution (GERFS) | |
void | GERFS (const char TRANS, const int N, const int NRHS, const double *A, const int LDA, const double *AF, const int LDAF, const int *IPIV, const double *B, const int LDB, double *X, const int LDX, double *FERR, double *BERR, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK Refine solution (GERFS) | |
void | GESVX (const char FACT, const char TRANS, const int N, const int NRHS, float *A, const int LDA, float *AF, const int LDAF, int *IPIV, const char EQUED, float *R, float *C, float *B, const int LDB, float *X, const int LDX, float *RCOND, float *FERR, float *BERR, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for general matrix (SGESVX) | |
void | GESVX (const char FACT, const char TRANS, const int N, const int NRHS, double *A, const int LDA, double *AF, const int LDAF, int *IPIV, const char EQUED, double *R, double *C, double *B, const int LDB, double *X, const int LDX, double *RCOND, double *FERR, double *BERR, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK solve driver for general matrix (DGESVX) | |
void | GEHRD (const int N, const int ILO, const int IHI, float *A, const int LDA, float *TAU, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for reduction to Hessenberg form (SGEHRD) | |
void | GEHRD (const int N, const int ILO, const int IHI, double *A, const int LDA, double *TAU, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for reduction to Hessenberg form (DGEHRD) | |
void | HSEQR (const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, float *H, const int LDH, float *WR, float *WI, float *Z, const int LDZ, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (SHSEQR) | |
void | HSEQR (const char JOB, const char COMPZ, const int N, const int ILO, const int IHI, double *H, const int LDH, double *WR, double *WI, double *Z, const int LDZ, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for computing the eigenvalues of a real upper Hessenberg matrix (DHSEQR) | |
void | ORGQR (const int M, const int N, const int K, float *A, const int LDA, float *TAU, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (SORGQR) | |
void | ORGQR (const int M, const int N, const int K, double *A, const int LDA, double *TAU, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for generating a m x n real matrix Q with orthonormal columns, defined as the product of k elementary reflectors. (DORGQR) | |
void | ORGHR (const int N, const int ILO, const int IHI, float *A, const int LDA, float *TAU, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (SORGHR) | |
void | ORGHR (const int N, const int ILO, const int IHI, double *A, const int LDA, double *TAU, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for generating a real orthogonal matrix Q defined by elementary reflectors. (DORGHR) | |
void | ORMHR (const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const float *A, const int LDA, const float *TAU, float *C, const int LDC, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (SORMHR) | |
void | ORMHR (const char SIDE, const char TRANS, const int M, const int N, const int ILO, const int IHI, const double *A, const int LDA, const double *TAU, double *C, const int LDC, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper for applying an orthogonal matrix in-place (DORMHR) | |
void | LARFT (const char DIRECT, const char STOREV, const int N, const int K, double *V, const int LDV, double *TAU, double *T, const int LDT) const |
Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (SLARFT). | |
void | LARFT (const char DIRECT, const char STOREV, const int N, const int K, float *V, const int LDV, float *TAU, float *T, const int LDT) const |
Epetra_LAPACK for forming the triangular factor of a product of elementary Householder reflectors (DLARFT). | |
void | TREVC (const char SIDE, const char HOWMNY, int *SELECT, const int N, const float *T, const int LDT, float *VL, const int LDVL, float *VR, const int LDVR, const int MM, int *M, float *WORK, int *INFO) const |
Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (STREVC) More... | |
void | TREVC (const char SIDE, const char HOWMNY, int *SELECT, const int N, const double *T, const int LDT, double *VL, const int LDVL, double *VR, const int LDVR, const int MM, int *M, double *WORK, int *INFO) const |
Epetra_LAPACK wrapper for computing eigenvectors of a quasi-triangular/triagnular matrix (DTREVC) More... | |
void | TREXC (const char COMPQ, const int N, float *T, const int LDT, float *Q, const int LDQ, int IFST, int ILST, float *WORK, int *INFO) const |
Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (STREXC) | |
void | TREXC (const char COMPQ, const int N, double *T, const int LDT, double *Q, const int LDQ, int IFST, int ILST, double *WORK, int *INFO) const |
Epetra_LAPACK wrapper for reordering the real-Schur/Schur factorization of a matrix (DTREXC) | |
void | GESVD (const char JOBU, const char JOBVT, const int M, const int N, float *A, const int LDA, float *S, float *U, const int LDU, float *VT, const int LDVT, float *WORK, const int *LWORK, int *INFO) const |
Epetra_LAPACK wrapper for computing the singular value decomposition (SGESVD) | |
void | GESVD (const char JOBU, const char JOBVT, const int M, const int N, double *A, const int LDA, double *S, double *U, const int LDU, double *VT, const int LDVT, double *WORK, const int *LWORK, int *INFO) const |
Epetra_LAPACK wrapper for computing the singular value decomposition (DGESVD) | |
void | GGSVD (const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int *K, int *L, double *A, const int LDA, double *B, const int LDB, double *ALPHA, double *BETA, double *U, const int LDU, double *V, const int LDV, double *Q, const int LDQ, double *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B. | |
void | GGSVD (const char JOBU, const char JOBV, const char JOBQ, const int M, const int N, const int P, int *K, int *L, float *A, const int LDA, float *B, const int LDB, float *ALPHA, float *BETA, float *U, const int LDU, float *V, const int LDV, float *Q, const int LDQ, float *WORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute the generalized singular value decomposition (GSVD) of an M-by-N real matrix A and P-by-N real matrix B. | |
void | GEEV (const char JOBVL, const char JOBVR, const int N, double *A, const int LDA, double *WR, double *WI, double *VL, const int LDVL, double *VR, const int LDVR, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
void | GEEV (const char JOBVL, const char JOBVR, const int N, float *A, const int LDA, float *WR, float *WI, float *VL, const int LDVL, float *VR, const int LDVR, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
void | SPEV (const char JOBZ, const char UPLO, const int N, double *AP, double *W, double *Z, int LDZ, double *WORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. | |
void | SPEV (const char JOBZ, const char UPLO, const int N, float *AP, float *W, float *Z, int LDZ, float *WORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. | |
void | SPGV (const int ITYPE, const char JOBZ, const char UPLO, const int N, double *AP, double *BP, double *W, double *Z, const int LDZ, double *WORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SPGV (const int ITYPE, const char JOBZ, const char UPLO, const int N, float *AP, float *BP, float *W, float *Z, const int LDZ, float *WORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues and, optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SYEV (const char JOBZ, const char UPLO, const int N, double *A, const int LDA, double *W, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYEV (const char JOBZ, const char UPLO, const int N, float *A, const int LDA, float *W, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYEVD (const char JOBZ, const char UPLO, const int N, double *A, const int LDA, double *W, double *WORK, const int LWORK, int *IWORK, const int LIWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYEVD (const char JOBZ, const char UPLO, const int N, float *A, const int LDA, float *W, float *WORK, const int LWORK, int *IWORK, const int LIWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYEVX (const char JOBZ, const char RANGE, const char UPLO, const int N, double *A, const int LDA, const double *VL, const double *VU, const int *IL, const int *IU, const double ABSTOL, int *M, double *W, double *Z, const int LDZ, double *WORK, const int LWORK, int *IWORK, int *IFAIL, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYEVX (const char JOBZ, const char RANGE, const char UPLO, const int N, float *A, const int LDA, const float *VL, const float *VU, const int *IL, const int *IU, const float ABSTOL, int *M, float *W, float *Z, const int LDZ, float *WORK, const int LWORK, int *IWORK, int *IFAIL, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A. | |
void | SYGV (const int ITYPE, const char JOBZ, const char UPLO, const int N, double *A, const int LDA, double *B, const int LDB, double *W, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SYGV (const int ITYPE, const char JOBZ, const char UPLO, const int N, float *A, const int LDA, float *B, const int LDB, float *W, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SYGVX (const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N, double *A, const int LDA, double *B, const int LDB, const double *VL, const double *VU, const int *IL, const int *IU, const double ABSTOL, int *M, double *W, double *Z, const int LDZ, double *WORK, const int LWORK, int *IWORK, int *IFAIL, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SYGVX (const int ITYPE, const char JOBZ, const char RANGE, const char UPLO, const int N, float *A, const int LDA, float *B, const int LDB, const float *VL, const float *VU, const int *IL, const int *IU, const float ABSTOL, int *M, float *W, float *Z, const int LDZ, float *WORK, const int LWORK, int *IWORK, int *IFAIL, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues, and optionally, eigenvectors of a real generalized symmetric-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. | |
void | SYEVR (const char JOBZ, const char RANGE, const char UPLO, const int N, double *A, const int LDA, const double *VL, const double *VU, const int *IL, const int *IU, const double ABSTOL, int *M, double *W, double *Z, const int LDZ, int *ISUPPZ, double *WORK, const int LWORK, int *IWORK, const int LIWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T. | |
void | SYEVR (const char JOBZ, const char RANGE, const char UPLO, const int N, float *A, const int LDA, const float *VL, const float *VU, const int *IL, const int *IU, const float ABSTOL, int *M, float *W, float *Z, const int LDZ, int *ISUPPZ, float *WORK, const int LWORK, int *IWORK, const int LIWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix T. | |
void | GEEVX (const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, double *A, const int LDA, double *WR, double *WI, double *VL, const int LDVL, double *VR, const int LDVR, int *ILO, int *IHI, double *SCALE, double *ABNRM, double *RCONDE, double *RCONDV, double *WORK, const int LWORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
void | GEEVX (const char BALANC, const char JOBVL, const char JOBVR, const char SENSE, const int N, float *A, const int LDA, float *WR, float *WI, float *VL, const int LDVL, float *VR, const int LDVR, int *ILO, int *IHI, float *SCALE, float *ABNRM, float *RCONDE, float *RCONDV, float *WORK, const int LWORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for an N-by-N real nonsymmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. | |
void | GESDD (const char JOBZ, const int M, const int N, double *A, const int LDA, double *S, double *U, const int LDU, double *VT, const int LDVT, double *WORK, const int LWORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. | |
void | GESDD (const char JOBZ, const int M, const int N, float *A, const int LDA, float *S, float *U, const int LDU, float *VT, const int LDVT, float *WORK, const int LWORK, int *IWORK, int *INFO) const |
Epetra_LAPACK wrapper to. | |
void | GGEV (const char JOBVL, const char JOBVR, const int N, double *A, const int LDA, double *B, const int LDB, double *ALPHAR, double *ALPHAI, double *BETA, double *VL, const int LDVL, double *VR, const int LDVR, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. | |
void | GGEV (const char JOBVL, const char JOBVR, const int N, float *A, const int LDA, float *B, const int LDB, float *ALPHAR, float *ALPHAI, float *BETA, float *VL, const int LDVL, float *VR, const int LDVR, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to compute for a pair of N-by-N real nonsymmetric matrices (A,B) the generalized eigenvalues, and optionally, the left and/or right generalized eigenvectors. | |
void | GGLSE (const int M, const int N, const int P, double *A, const int LDA, double *B, const int LDB, double *C, double *D, double *X, double *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem. | |
void | GGLSE (const int M, const int N, const int P, float *A, const int LDA, float *B, const int LDB, float *C, float *D, float *X, float *WORK, const int LWORK, int *INFO) const |
Epetra_LAPACK wrapper to solve the linear equality-constrained least squares (LSE) problem. | |
void | LAMCH (const char CMACH, float &T) const |
Epetra_LAPACK wrapper for DLAMCH routine. On out, T holds machine double precision floating point characteristics. This information is returned by the Lapack routine. | |
void | LAMCH (const char CMACH, double &T) const |
Epetra_LAPACK wrapper for SLAMCH routine. On out, T holds machine single precision floating point characteristics. This information is returned by the Lapack routine. | |
void | TRTRS (const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const float *A, const int LDA, float *B, const int LDB, int *INFO) const |
Epetra_LAPACK wrapper for TRTRS routine. | |
void | TRTRS (const char UPLO, const char TRANS, const char DIAG, const int N, const int NRHS, const double *A, const int LDA, double *B, const int LDB, int *INFO) const |
Epetra_LAPACK wrapper for TRTRS routine. | |
Public Member Functions inherited from Epetra_Object | |
Epetra_Object (int TracebackModeIn=-1, bool set_label=true) | |
Epetra_Object Constructor. More... | |
Epetra_Object (const char *const Label, int TracebackModeIn=-1) | |
Epetra_Object Constructor. More... | |
Epetra_Object (const Epetra_Object &Object) | |
Epetra_Object Copy Constructor. More... | |
virtual | ~Epetra_Object () |
Epetra_Object Destructor. More... | |
virtual int | ReportError (const std::string Message, int ErrorCode) const |
Error reporting method. | |
virtual void | SetLabel (const char *const Label) |
Epetra_Object Label definition using char *. More... | |
virtual const char * | Label () const |
Epetra_Object Label access funtion. More... | |
Additional Inherited Members | |
Static Public Member Functions inherited from Epetra_Object | |
static void | SetTracebackMode (int TracebackModeValue) |
Set the value of the Epetra_Object error traceback report mode. More... | |
static int | GetTracebackMode () |
Get the value of the Epetra_Object error report mode. | |
static std::ostream & | GetTracebackStream () |
Get the output stream for error reporting. | |
Static Public Attributes inherited from Epetra_Object | |
static int | TracebackMode |
Protected Member Functions inherited from Epetra_SerialDenseSolver | |
void | AllocateWORK () |
void | AllocateIWORK () |
void | InitPointers () |
void | DeleteArrays () |
void | ResetMatrix () |
void | ResetVectors () |
Protected Member Functions inherited from Epetra_Object | |
std::string | toString (const int &x) const |
std::string | toString (const long long &x) const |
std::string | toString (const double &x) const |
Protected Attributes inherited from Epetra_SerialDenseSolver | |
bool | Equilibrate_ |
bool | ShouldEquilibrate_ |
bool | A_Equilibrated_ |
bool | B_Equilibrated_ |
bool | Transpose_ |
bool | Factored_ |
bool | EstimateSolutionErrors_ |
bool | SolutionErrorsEstimated_ |
bool | Solved_ |
bool | Inverted_ |
bool | ReciprocalConditionEstimated_ |
bool | RefineSolution_ |
bool | SolutionRefined_ |
char | TRANS_ |
int | M_ |
int | N_ |
int | Min_MN_ |
int | NRHS_ |
int | LDA_ |
int | LDAF_ |
int | LDB_ |
int | LDX_ |
int | INFO_ |
int | LWORK_ |
int * | IPIV_ |
int * | IWORK_ |
double | ANORM_ |
double | RCOND_ |
double | ROWCND_ |
double | COLCND_ |
double | AMAX_ |
Epetra_SerialDenseMatrix * | Matrix_ |
Epetra_SerialDenseMatrix * | LHS_ |
Epetra_SerialDenseMatrix * | RHS_ |
Epetra_SerialDenseMatrix * | Factor_ |
double * | A_ |
double * | FERR_ |
double * | BERR_ |
double * | AF_ |
double * | WORK_ |
double * | R_ |
double * | C_ |
double * | B_ |
double * | X_ |
Protected Attributes inherited from Epetra_CompObject | |
Epetra_Flops * | FlopCounter_ |
Epetra_SerialSpdDenseSolver: A class for constructing and using symmetric positive definite dense matrices.
The Epetra_SerialSpdDenseSolver class enables the construction and use of real-valued, symmetric positive definite, double-precision dense matrices. It is built on the Epetra_DenseMatrix class which in turn is built on the BLAS and LAPACK via the Epetra_BLAS and Epetra_LAPACK classes.
The Epetra_SerialSpdDenseSolver class is intended to provide full-featured support for solving linear and eigen system problems for symmetric positive definite matrices. It is written on top of BLAS and LAPACK and thus has excellent performance and numerical capabilities. Using this class, one can either perform simple factorizations and solves or apply all the tricks available in LAPACK to get the best possible solution for very ill-conditioned problems.
Epetra_SerialSpdDenseSolver vs. Epetra_LAPACK
The Epetra_LAPACK class provides access to most of the same functionality as Epetra_SerialSpdDenseSolver. The primary difference is that Epetra_LAPACK is a "thin" layer on top of LAPACK and Epetra_SerialSpdDenseSolver attempts to provide easy access to the more sophisticated aspects of solving dense linear and eigensystems.
When you should use Epetra_SerialSpdDenseSolver: If you want to (or potentially want to) solve ill-conditioned problems or want to work with a more object-oriented interface, you should probably use Epetra_SerialSpdDenseSolver.
Constructing Epetra_SerialSpdDenseSolver Objects
There are three Epetra_DenseMatrix constructors. The first constructs a zero-sized object which should be made to appropriate length using the Shape() or Reshape() functions and then filled with the [] or () operators. The second is a constructor that accepts user data as a 2D array, the third is a copy constructor. The second constructor has two data access modes (specified by the Epetra_DataAccess argument):
Setting vectors used for linear solves
Setting the X and B vectors (which are Epetra_DenseMatrix objects) used for solving linear systems is done separately from the constructor. This allows a single matrix factor to be used for multiple solves. Similar to the constructor, the vectors X and B can be copied or viewed using the Epetra_DataAccess argument.
Extracting Data from Epetra_SerialSpdDenseSolver Objects
Once a Epetra_SerialSpdDenseSolver is constructed, it is possible to view the data via access functions.
Vector and Utility Functions
Once a Epetra_SerialSpdDenseSolver is constructed, several mathematical functions can be applied to the object. Specifically:
The final useful function is Flops(). Each Epetra_SerialSpdDenseSolver object keep track of the number of serial floating point operations performed using the specified object as the this argument to the function. The Flops() function returns this number as a double precision number. Using this information, in conjunction with the Epetra_Time class, one can get accurate parallel performance numbers.
Strategies for Solving Linear Systems In many cases, linear systems can be accurately solved by simply computing the Cholesky factorization of the matrix and then performing a forward back solve with a given set of right hand side vectors. However, in some instances, the factorization may be very poorly conditioned and the simple approach may not work. In these situations, equilibration and iterative refinement may improve the accuracy, or prevent a breakdown in the factorization.
Epetra_SerialSpdDenseSolver will use equilibration with the factorization if, once the object is constructed and before it is factored, you call the function FactorWithEquilibration(true) to force equilibration to be used. If you are uncertain if equilibration should be used, you may call the function ShouldEquilibrate() which will return true if equilibration could possibly help. ShouldEquilibrate() uses guidelines specified in the LAPACK User Guide, namely if SCOND < 0.1 and AMAX < Underflow or AMAX > Overflow, to determine if equilibration might be useful.
Epetra_SerialSpdDenseSolver will use iterative refinement after a forward/back solve if you call SolveToRefinedSolution(true). It will also compute forward and backward error estimates if you call EstimateSolutionErrors(true). Access to the forward (back) error estimates is available via FERR() (BERR()).
Examples using Epetra_SerialSpdDenseSolver can be found in the Epetra test directories.
|
virtual |
Apply Iterative Refinement.
Reimplemented from Epetra_SerialDenseSolver.
|
virtual |
Computes the scaling vector S(i) = 1/sqrt(A(i,i) of the this matrix.
Reimplemented from Epetra_SerialDenseSolver.
|
virtual |
Equilibrates the this matrix.
Reimplemented from Epetra_SerialDenseSolver.
int Epetra_SerialSpdDenseSolver::EquilibrateRHS | ( | void | ) |
Equilibrates the current RHS.
|
virtual |
Computes the in-place Cholesky factorization of the matrix using the LAPACK routine DPOTRF.
Reimplemented from Epetra_SerialDenseSolver.
|
virtual |
Inverts the this matrix.
Note: This function works a little differently that DPOTRI in that it fills the entire matrix with the inverse, independent of the UPLO specification.
Reimplemented from Epetra_SerialDenseSolver.
|
virtual |
Returns the reciprocal of the 1-norm condition number of the this matrix.
Value | Out On return contains the reciprocal of the 1-norm condition number of the this matrix. |
Reimplemented from Epetra_SerialDenseSolver.
|
inline |
|
virtual |
Computes the solution X to AX = B for the this matrix and the B provided to SetVectors()..
Reimplemented from Epetra_SerialDenseSolver.
int Epetra_SerialSpdDenseSolver::UnequilibrateLHS | ( | void | ) |
Unscales the solution vectors if equilibration was used to solve the system.