12 #include "Teuchos_DefaultComm.hpp"
14 #include "Tempus_config.hpp"
15 #include "Tempus_IntegratorBasic.hpp"
16 #include "Tempus_IntegratorAdjointSensitivity.hpp"
18 #include "Thyra_VectorStdOps.hpp"
19 #include "Thyra_MultiVectorStdOps.hpp"
21 #include "../TestModels/SinCosModel.hpp"
22 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
24 #include "Stratimikos_DefaultLinearSolverBuilder.hpp"
25 #include "Thyra_LinearOpWithSolveFactoryHelpers.hpp"
26 #include "Thyra_DefaultMultiVectorProductVector.hpp"
27 #include "Thyra_DefaultProductVector.hpp"
34 namespace Tempus_Test {
38 using Teuchos::sublist;
39 using Teuchos::getParametersFromXmlFile;
49 std::vector<double> StepSize;
50 std::vector<double> ErrorNorm;
51 const int nTimeStepSizes = 7;
57 Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
60 for (
int n=0; n<nTimeStepSizes; n++) {
64 getParametersFromXmlFile(
"Tempus_BackwardEuler_SinCos.xml");
76 sens_pl.
set(
"Mass Matrix Is Identity",
false);
79 interp_pl.
set(
"Interpolator Type",
"Lagrange");
80 interp_pl.
set(
"Order", 0);
83 pl->
sublist(
"Default Stepper").
set(
"Use FSAL",
false);
88 .
set(
"Initial Condition Consistency Check",
false);
91 pl->
sublist(
"Default Integrator")
92 .
sublist(
"Time Step Control").
set(
"Initial Time Step", dt);
94 Tempus::integratorAdjointSensitivity<double>(pl, model);
95 order = integrator->getStepper()->getOrder();
98 double t0 = pl->sublist(
"Default Integrator")
99 .sublist(
"Time Step Control").
get<
double>(
"Initial Time");
101 model->getExactSolution(t0).get_x();
102 const int num_param = model->get_p_space(0)->dim();
104 Thyra::createMembers(model->get_x_space(), num_param);
105 for (
int i=0; i<num_param; ++i)
106 Thyra::assign(DxDp0->col(i).
ptr(),
107 *(model->getExactSensSolution(i, t0).get_x()));
108 integrator->initializeSolutionHistory(t0, x0, Teuchos::null, Teuchos::null,
109 DxDp0, Teuchos::null, Teuchos::null);
112 bool integratorStatus = integrator->advanceTime();
116 double time = integrator->getTime();
117 double timeFinal =pl->sublist(
"Default Integrator")
118 .sublist(
"Time Step Control").
get<
double>(
"Final Time");
127 Thyra::createMembers(model->get_x_space(), num_param);
131 const int num_g = DgDp->domain()->dim();
132 for (
int i=0; i<num_g; ++i)
133 for (
int j=0; j<num_param; ++j)
134 dxdp_view(i,j) = dgdp_view(j,i);
137 model->getExactSolution(time).get_x();
139 Thyra::createMembers(model->get_x_space(), num_param);
140 for (
int i=0; i<num_param; ++i)
141 Thyra::assign(DxDp_exact->col(i).
ptr(),
142 *(model->getExactSensSolution(i, time).get_x()));
145 if (comm->getRank() == 0 && n == nTimeStepSizes-1) {
149 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens.dat");
151 integrator->getSolutionHistory();
152 for (
int i=0; i<solutionHistory->getNumStates(); i++) {
154 const double time_i = solutionState->getTime();
156 Teuchos::rcp_dynamic_cast<
const DPV>(solutionState->getX());
158 x_prod_plot->getVectorBlock(0);
160 Teuchos::rcp_dynamic_cast<
const DMVPV>(x_prod_plot->getVectorBlock(1));
162 adjoint_prod_plot->getMultiVector();
164 model->getExactSolution(time_i).get_x();
165 ftmp << std::fixed << std::setprecision(7)
167 << std::setw(11) << get_ele(*(x_plot), 0)
168 << std::setw(11) << get_ele(*(x_plot), 1)
169 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 0)
170 << std::setw(11) << get_ele(*(adjoint_plot->col(0)), 1)
171 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 0)
172 << std::setw(11) << get_ele(*(adjoint_plot->col(1)), 1)
173 << std::setw(11) << get_ele(*(x_exact_plot), 0)
174 << std::setw(11) << get_ele(*(x_exact_plot), 1)
183 Thyra::V_StVpStV(xdiff.
ptr(), 1.0, *x_exact, -1.0, *(x));
184 Thyra::V_VmV(DxDpdiff.
ptr(), *DxDp_exact, *DxDp);
185 StepSize.push_back(dt);
186 double L2norm = Thyra::norm_2(*xdiff);
189 Thyra::norms_2(*DxDpdiff, L2norm_DxDp());
190 for (
int i=0; i<num_param; ++i)
191 L2norm += L2norm_DxDp[i]*L2norm_DxDp[i];
192 L2norm = std::sqrt(L2norm);
193 ErrorNorm.push_back(L2norm);
201 double slope = computeLinearRegressionLogLog<double>(StepSize, ErrorNorm);
202 *my_out <<
" Stepper = BackwardEuler" << std::endl;
203 *my_out <<
" =========================" << std::endl;
204 *my_out <<
" Expected order: " << order << std::endl;
205 *my_out <<
" Observed order: " << slope << std::endl;
206 *my_out <<
" =========================" << std::endl;
210 if (comm->getRank() == 0) {
211 std::ofstream ftmp(
"Tempus_BackwardEuler_SinCos_AdjSens-Error.dat");
212 double error0 = 0.8*ErrorNorm[0];
213 for (
int n=0; n<nTimeStepSizes; n++) {
214 ftmp << StepSize[n] <<
" " << ErrorNorm[n] <<
" "
215 << error0*(StepSize[n]/StepSize[0]) << std::endl;
basic_FancyOStream & setProcRankAndSize(const int procRank, const int numProcs)
ParameterList & set(std::string const &name, T const &value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
#define TEST_FLOATING_EQUALITY(v1, v2, tol)
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation with a...
static Teuchos::RCP< const Comm< OrdinalType > > getComm()
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
basic_FancyOStream & setOutputToRootOnly(const int rootRank)
ParameterList & sublist(const std::string &name, bool mustAlreadyExist=false, const std::string &docString="")
Solution state for integrators and steppers. SolutionState contains the metadata for solutions and th...