Sacado Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
view/HexElement.hpp
Go to the documentation of this file.
1 //@HEADER
2 // ************************************************************************
3 //
4 // Kokkos v. 4.0
5 // Copyright (2022) National Technology & Engineering
6 // Solutions of Sandia, LLC (NTESS).
7 //
8 // Under the terms of Contract DE-NA0003525 with NTESS,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Part of Kokkos, under the Apache License v2.0 with LLVM Exceptions.
12 // See https://kokkos.org/LICENSE for license information.
13 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
14 //
15 //@HEADER
16 
17 #ifndef KOKKOS_HEXELEMENT_HPP
18 #define KOKKOS_HEXELEMENT_HPP
19 
20 namespace Kokkos {
21 namespace Example {
22 
23 template< unsigned NodeCount >
24 class HexElement_TensorData ;
25 
26 template< unsigned NodeCount , class Device >
27 class HexElement_TensorEval ;
28 
29 //----------------------------------------------------------------------------
31 template<>
32 class HexElement_TensorData< 8 > {
33 public:
34 
35  static const unsigned element_node_count = 8 ;
36  static const unsigned spatial_dimension = 3 ;
37  static const unsigned integration_count_1d = 2 ;
38  static const unsigned function_count_1d = 2 ;
39 
40  double values_1d [ function_count_1d ][ integration_count_1d ];
41  double derivs_1d [ function_count_1d ][ integration_count_1d ];
42  double weights_1d[ integration_count_1d ];
43 
44  unsigned char eval_map[ element_node_count ][4] ;
45 
46  static double eval_value_1d( const unsigned jf , const double x )
47  {
48  return 0 == jf ? 0.5 * ( 1.0 - x ) : (
49  1 == jf ? 0.5 * ( 1.0 + x ) : 0 );
50  }
51 
52  static double eval_deriv_1d( const unsigned jf , const double )
53  {
54  return 0 == jf ? -0.5 : (
55  1 == jf ? 0.5 : 0 );
56  }
57 
59  {
60  const unsigned char tmp_map[ element_node_count ][ spatial_dimension ] =
61  { { 0 , 0 , 0 },
62  { 1 , 0 , 0 },
63  { 1 , 1 , 0 },
64  { 0 , 1 , 0 },
65  { 0 , 0 , 1 },
66  { 1 , 0 , 1 },
67  { 1 , 1 , 1 },
68  { 0 , 1 , 1 } };
69 
70  weights_1d[0] = 1 ;
71  weights_1d[1] = 1 ;
72 
73  const double points_1d[ integration_count_1d ] =
74  { -0.577350269189623 , 0.577350269189623 };
75 
76  for ( unsigned i = 0 ; i < element_node_count ; ++i ) {
77  eval_map[i][0] = tmp_map[i][0];
78  eval_map[i][1] = tmp_map[i][1];
79  eval_map[i][2] = tmp_map[i][2];
80  }
81 
82  for ( unsigned xp = 0 ; xp < integration_count_1d ; ++xp ) {
83  for ( unsigned xf = 0 ; xf < function_count_1d ; ++xf ) {
84  values_1d[xp][xf] = eval_value_1d( xf , points_1d[xp] );
85  derivs_1d[xp][xf] = eval_deriv_1d( xf , points_1d[xp] );
86  }}
87  }
88 };
89 
90 //----------------------------------------------------------------------------
91 
92 template<>
93 class HexElement_TensorData< 27 > {
94 public:
95 
96  static const unsigned element_node_count = 27 ;
97  static const unsigned spatial_dimension = 3 ;
98  static const unsigned integration_count_1d = 3 ;
99  static const unsigned function_count_1d = 3 ;
100 
101  double values_1d [ function_count_1d ][ integration_count_1d ];
102  double derivs_1d [ function_count_1d ][ integration_count_1d ];
103  double weights_1d[ integration_count_1d ];
104 
105  unsigned char eval_map[ element_node_count ][4] ;
106 
107  // sizeof(EvaluateElementHex) = 111 bytes =
108  // sizeof(double) * 9 +
109  // sizeof(double) * 9 +
110  // sizeof(double) * 3 +
111  // sizeof(char) * 27
112 
113  static double eval_value_1d( const unsigned jf , const double p )
114  {
115  return 0 == jf ? 0.5 * p * ( p - 1 ) : (
116  1 == jf ? 1.0 - p * p : (
117  2 == jf ? 0.5 * p * ( p + 1 ) : 0 ));
118  }
119 
120  static double eval_deriv_1d( const unsigned jf , const double p )
121  {
122  return 0 == jf ? p - 0.5 : (
123  1 == jf ? -2.0 * p : (
124  2 == jf ? p + 0.5 : 0 ));
125  }
126 
128  {
129  const unsigned char tmp_map[ element_node_count ][ spatial_dimension ] =
130  { { 0 , 0 , 0 },
131  { 2 , 0 , 0 },
132  { 2 , 2 , 0 },
133  { 0 , 2 , 0 },
134  { 0 , 0 , 2 },
135  { 2 , 0 , 2 },
136  { 2 , 2 , 2 },
137  { 0 , 2 , 2 },
138  { 1 , 0 , 0 },
139  { 2 , 1 , 0 },
140  { 1 , 2 , 0 },
141  { 0 , 1 , 0 },
142  { 0 , 0 , 1 },
143  { 2 , 0 , 1 },
144  { 2 , 2 , 1 },
145  { 0 , 2 , 1 },
146  { 1 , 0 , 2 },
147  { 2 , 1 , 2 },
148  { 1 , 2 , 2 },
149  { 0 , 1 , 2 },
150  { 1 , 1 , 1 },
151  { 1 , 1 , 0 },
152  { 1 , 1 , 2 },
153  { 0 , 1 , 1 },
154  { 2 , 1 , 1 },
155  { 1 , 0 , 1 },
156  { 1 , 2 , 1 } };
157 
158  // Interval [-1,1]
159 
160  weights_1d[0] = 0.55555555555556 ;
161  weights_1d[1] = 0.88888888888889 ;
162  weights_1d[2] = 0.55555555555556 ;
163 
164  const double points_1d[3] = { -0.774596669241483 ,
165  0.000000000000000 ,
166  0.774596669241483 };
167 
168  for ( unsigned i = 0 ; i < element_node_count ; ++i ) {
169  eval_map[i][0] = tmp_map[i][0];
170  eval_map[i][1] = tmp_map[i][1];
171  eval_map[i][2] = tmp_map[i][2];
172  }
173 
174  for ( unsigned xp = 0 ; xp < integration_count_1d ; ++xp ) {
175  for ( unsigned xf = 0 ; xf < function_count_1d ; ++xf ) {
176  values_1d[xp][xf] = eval_value_1d( xf , points_1d[xp] );
177  derivs_1d[xp][xf] = eval_deriv_1d( xf , points_1d[xp] );
178  }}
179  }
180 };
181 
182 //----------------------------------------------------------------------------
183 
184 template< unsigned NodeCount >
185 class HexElement_Data {
186 public:
187  static const unsigned spatial_dimension = 3 ;
188  static const unsigned element_node_count = NodeCount ;
189  static const unsigned integration_count = NodeCount ;
190  static const unsigned function_count = NodeCount ;
191 
192  double weights[ integration_count ] ;
195 
197  {
199 
200  for ( unsigned ip = 0 ; ip < integration_count ; ++ip ) {
201 
202  const unsigned ipx = tensor_data.eval_map[ip][0] ;
203  const unsigned ipy = tensor_data.eval_map[ip][1] ;
204  const unsigned ipz = tensor_data.eval_map[ip][2] ;
205 
206  weights[ip] = tensor_data.weights_1d[ ipx ] *
207  tensor_data.weights_1d[ ipy ] *
208  tensor_data.weights_1d[ ipz ] ;
209 
210  for ( unsigned jf = 0 ; jf < function_count ; ++jf ) {
211 
212  const unsigned jfx = tensor_data.eval_map[jf][0] ;
213  const unsigned jfy = tensor_data.eval_map[jf][1] ;
214  const unsigned jfz = tensor_data.eval_map[jf][2] ;
215 
216  values[ip][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
217  tensor_data.values_1d[ ipy ][ jfy ] *
218  tensor_data.values_1d[ ipz ][ jfz ] ;
219 
220  gradients[ip][0][jf] = tensor_data.derivs_1d[ ipx ][ jfx ] *
221  tensor_data.values_1d[ ipy ][ jfy ] *
222  tensor_data.values_1d[ ipz ][ jfz ] ;
223 
224  gradients[ip][1][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
225  tensor_data.derivs_1d[ ipy ][ jfy ] *
226  tensor_data.values_1d[ ipz ][ jfz ] ;
227 
228  gradients[ip][2][jf] = tensor_data.values_1d[ ipx ][ jfx ] *
229  tensor_data.values_1d[ ipy ][ jfy ] *
230  tensor_data.derivs_1d[ ipz ][ jfz ] ;
231  }
232  }
233  }
234 };
235 
236 //----------------------------------------------------------------------------
237 
238 } /* namespace Example */
239 } /* namespace Kokkos */
240 
241 #endif /* #ifndef KOKKOS_HEXELEMENT_HPP */
242 
243 
double weights[integration_count]
Definition: HexElement.hpp:192
const char * p
static double eval_value_1d(const unsigned jf, const double p)
static const unsigned element_node_count
Definition: HexElement.hpp:188
static const unsigned function_count
Definition: HexElement.hpp:190
double gradients[integration_count][spatial_dimension][function_count]
Definition: HexElement.hpp:194
static double eval_deriv_1d(const unsigned jf, const double p)
static double eval_value_1d(const unsigned jf, const double x)
static double eval_deriv_1d(const unsigned jf, const double)
double values[integration_count][function_count]
Definition: HexElement.hpp:193
static const unsigned integration_count
Definition: HexElement.hpp:189
static const unsigned spatial_dimension
Definition: HexElement.hpp:187