Sacado Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
gmock-actions_test.cc
Go to the documentation of this file.
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Mock - a framework for writing C++ mock classes.
32 //
33 // This file tests the built-in actions.
34 
35 // Silence C4100 (unreferenced formal parameter) for MSVC
36 #ifdef _MSC_VER
37 # pragma warning(push)
38 # pragma warning(disable:4100)
39 #if _MSC_VER == 1900
40 // and silence C4800 (C4800: 'int *const ': forcing value
41 // to bool 'true' or 'false') for MSVC 15
42 # pragma warning(disable:4800)
43 #endif
44 #endif
45 
46 #include "gmock/gmock-actions.h"
47 #include <algorithm>
48 #include <iterator>
49 #include <memory>
50 #include <string>
51 #include <type_traits>
52 #include "gmock/gmock.h"
54 #include "gtest/gtest.h"
55 #include "gtest/gtest-spi.h"
56 
57 namespace {
58 
60 using ::testing::Action;
61 using ::testing::ActionInterface;
65 using ::testing::DefaultValue;
72 using ::testing::PolymorphicAction;
83 using ::testing::internal::BuiltInDefaultValue;
84 
85 #if !GTEST_OS_WINDOWS_MOBILE
87 #endif
88 
89 // Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
90 TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
91  EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
92  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
93  EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
94 }
95 
96 // Tests that BuiltInDefaultValue<T*>::Exists() return true.
97 TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
98  EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
99  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
100  EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
101 }
102 
103 // Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
104 // built-in numeric type.
105 TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
106  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
107  EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
108  EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
109 #if GMOCK_WCHAR_T_IS_NATIVE_
110 #if !defined(__WCHAR_UNSIGNED__)
111  EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
112 #else
113  EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
114 #endif
115 #endif
116  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
117  EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
118  EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
119  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
120  EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
121  EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
122  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
123  EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
124  EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
125  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
126  EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
127  EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
128  EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
129  EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
130 }
131 
132 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
133 // built-in numeric type.
134 TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
135  EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
136  EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
137  EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
138 #if GMOCK_WCHAR_T_IS_NATIVE_
139  EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
140 #endif
141  EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
142  EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
143  EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
144  EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
145  EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
146  EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
147  EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
148  EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
149  EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
150  EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
151  EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
152  EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
153  EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
154  EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
155 }
156 
157 // Tests that BuiltInDefaultValue<bool>::Get() returns false.
158 TEST(BuiltInDefaultValueTest, IsFalseForBool) {
159  EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
160 }
161 
162 // Tests that BuiltInDefaultValue<bool>::Exists() returns true.
163 TEST(BuiltInDefaultValueTest, BoolExists) {
164  EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
165 }
166 
167 // Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
168 // string type.
169 TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
170  EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get());
171 }
172 
173 // Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
174 // string type.
175 TEST(BuiltInDefaultValueTest, ExistsForString) {
176  EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists());
177 }
178 
179 // Tests that BuiltInDefaultValue<const T>::Get() returns the same
180 // value as BuiltInDefaultValue<T>::Get() does.
181 TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
182  EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
183  EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
184  EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
185  EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
186 }
187 
188 // A type that's default constructible.
189 class MyDefaultConstructible {
190  public:
191  MyDefaultConstructible() : value_(42) {}
192 
193  int value() const { return value_; }
194 
195  private:
196  int value_;
197 };
198 
199 // A type that's not default constructible.
200 class MyNonDefaultConstructible {
201  public:
202  // Does not have a default ctor.
203  explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
204 
205  int value() const { return value_; }
206 
207  private:
208  int value_;
209 };
210 
211 
212 TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
213  EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
214 }
215 
216 TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
217  EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
218 }
219 
220 
221 TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
222  EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
223 }
224 
225 // Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
226 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
228  BuiltInDefaultValue<int&>::Get();
229  }, "");
231  BuiltInDefaultValue<const char&>::Get();
232  }, "");
233 }
234 
235 TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
237  BuiltInDefaultValue<MyNonDefaultConstructible>::Get();
238  }, "");
239 }
240 
241 // Tests that DefaultValue<T>::IsSet() is false initially.
242 TEST(DefaultValueTest, IsInitiallyUnset) {
243  EXPECT_FALSE(DefaultValue<int>::IsSet());
244  EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
245  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
246 }
247 
248 // Tests that DefaultValue<T> can be set and then unset.
249 TEST(DefaultValueTest, CanBeSetAndUnset) {
250  EXPECT_TRUE(DefaultValue<int>::Exists());
251  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
252 
253  DefaultValue<int>::Set(1);
254  DefaultValue<const MyNonDefaultConstructible>::Set(
255  MyNonDefaultConstructible(42));
256 
257  EXPECT_EQ(1, DefaultValue<int>::Get());
258  EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
259 
260  EXPECT_TRUE(DefaultValue<int>::Exists());
261  EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
262 
263  DefaultValue<int>::Clear();
264  DefaultValue<const MyNonDefaultConstructible>::Clear();
265 
266  EXPECT_FALSE(DefaultValue<int>::IsSet());
267  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
268 
269  EXPECT_TRUE(DefaultValue<int>::Exists());
270  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
271 }
272 
273 // Tests that DefaultValue<T>::Get() returns the
274 // BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
275 // false.
276 TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
277  EXPECT_FALSE(DefaultValue<int>::IsSet());
278  EXPECT_TRUE(DefaultValue<int>::Exists());
279  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
280  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
281 
282  EXPECT_EQ(0, DefaultValue<int>::Get());
283 
285  DefaultValue<MyNonDefaultConstructible>::Get();
286  }, "");
287 }
288 
289 TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
290  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
291  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
292  DefaultValue<std::unique_ptr<int>>::SetFactory([] {
293  return std::unique_ptr<int>(new int(42));
294  });
295  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
296  std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
297  EXPECT_EQ(42, *i);
298 }
299 
300 // Tests that DefaultValue<void>::Get() returns void.
301 TEST(DefaultValueTest, GetWorksForVoid) {
302  return DefaultValue<void>::Get();
303 }
304 
305 // Tests using DefaultValue with a reference type.
306 
307 // Tests that DefaultValue<T&>::IsSet() is false initially.
308 TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
309  EXPECT_FALSE(DefaultValue<int&>::IsSet());
310  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
311  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
312 }
313 
314 // Tests that DefaultValue<T&>::Exists is false initiallly.
315 TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
316  EXPECT_FALSE(DefaultValue<int&>::Exists());
317  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
318  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
319 }
320 
321 // Tests that DefaultValue<T&> can be set and then unset.
322 TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
323  int n = 1;
324  DefaultValue<const int&>::Set(n);
325  MyNonDefaultConstructible x(42);
326  DefaultValue<MyNonDefaultConstructible&>::Set(x);
327 
328  EXPECT_TRUE(DefaultValue<const int&>::Exists());
329  EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
330 
331  EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
332  EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
333 
334  DefaultValue<const int&>::Clear();
335  DefaultValue<MyNonDefaultConstructible&>::Clear();
336 
337  EXPECT_FALSE(DefaultValue<const int&>::Exists());
338  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
339 
340  EXPECT_FALSE(DefaultValue<const int&>::IsSet());
341  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
342 }
343 
344 // Tests that DefaultValue<T&>::Get() returns the
345 // BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
346 // false.
347 TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
348  EXPECT_FALSE(DefaultValue<int&>::IsSet());
349  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
350 
352  DefaultValue<int&>::Get();
353  }, "");
355  DefaultValue<MyNonDefaultConstructible>::Get();
356  }, "");
357 }
358 
359 // Tests that ActionInterface can be implemented by defining the
360 // Perform method.
361 
362 typedef int MyGlobalFunction(bool, int);
363 
364 class MyActionImpl : public ActionInterface<MyGlobalFunction> {
365  public:
366  int Perform(const std::tuple<bool, int>& args) override {
367  return std::get<0>(args) ? std::get<1>(args) : 0;
368  }
369 };
370 
371 TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
372  MyActionImpl my_action_impl;
373  (void)my_action_impl;
374 }
375 
376 TEST(ActionInterfaceTest, MakeAction) {
377  Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
378 
379  // When exercising the Perform() method of Action<F>, we must pass
380  // it a tuple whose size and type are compatible with F's argument
381  // types. For example, if F is int(), then Perform() takes a
382  // 0-tuple; if F is void(bool, int), then Perform() takes a
383  // std::tuple<bool, int>, and so on.
384  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
385 }
386 
387 // Tests that Action<F> can be contructed from a pointer to
388 // ActionInterface<F>.
389 TEST(ActionTest, CanBeConstructedFromActionInterface) {
390  Action<MyGlobalFunction> action(new MyActionImpl);
391 }
392 
393 // Tests that Action<F> delegates actual work to ActionInterface<F>.
394 TEST(ActionTest, DelegatesWorkToActionInterface) {
395  const Action<MyGlobalFunction> action(new MyActionImpl);
396 
397  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
398  EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
399 }
400 
401 // Tests that Action<F> can be copied.
402 TEST(ActionTest, IsCopyable) {
403  Action<MyGlobalFunction> a1(new MyActionImpl);
404  Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
405 
406  // a1 should continue to work after being copied from.
407  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
408  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
409 
410  // a2 should work like the action it was copied from.
411  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
412  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
413 
414  a2 = a1; // Tests the assignment operator.
415 
416  // a1 should continue to work after being copied from.
417  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
418  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
419 
420  // a2 should work like the action it was copied from.
421  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
422  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
423 }
424 
425 // Tests that an Action<From> object can be converted to a
426 // compatible Action<To> object.
427 
428 class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
429  public:
430  bool Perform(const std::tuple<int>& arg) override {
431  return std::get<0>(arg) != 0;
432  }
433 };
434 
435 TEST(ActionTest, CanBeConvertedToOtherActionType) {
436  const Action<bool(int)> a1(new IsNotZero); // NOLINT
437  const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
438  EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
439  EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
440 }
441 
442 // The following two classes are for testing MakePolymorphicAction().
443 
444 // Implements a polymorphic action that returns the second of the
445 // arguments it receives.
446 class ReturnSecondArgumentAction {
447  public:
448  // We want to verify that MakePolymorphicAction() can work with a
449  // polymorphic action whose Perform() method template is either
450  // const or not. This lets us verify the non-const case.
451  template <typename Result, typename ArgumentTuple>
452  Result Perform(const ArgumentTuple& args) {
453  return std::get<1>(args);
454  }
455 };
456 
457 // Implements a polymorphic action that can be used in a nullary
458 // function to return 0.
459 class ReturnZeroFromNullaryFunctionAction {
460  public:
461  // For testing that MakePolymorphicAction() works when the
462  // implementation class' Perform() method template takes only one
463  // template parameter.
464  //
465  // We want to verify that MakePolymorphicAction() can work with a
466  // polymorphic action whose Perform() method template is either
467  // const or not. This lets us verify the const case.
468  template <typename Result>
469  Result Perform(const std::tuple<>&) const {
470  return 0;
471  }
472 };
473 
474 // These functions verify that MakePolymorphicAction() returns a
475 // PolymorphicAction<T> where T is the argument's type.
476 
477 PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
478  return MakePolymorphicAction(ReturnSecondArgumentAction());
479 }
480 
481 PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
482 ReturnZeroFromNullaryFunction() {
483  return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
484 }
485 
486 // Tests that MakePolymorphicAction() turns a polymorphic action
487 // implementation class into a polymorphic action.
488 TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
489  Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
490  EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
491 }
492 
493 // Tests that MakePolymorphicAction() works when the implementation
494 // class' Perform() method template has only one template parameter.
495 TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
496  Action<int()> a1 = ReturnZeroFromNullaryFunction();
497  EXPECT_EQ(0, a1.Perform(std::make_tuple()));
498 
499  Action<void*()> a2 = ReturnZeroFromNullaryFunction();
500  EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
501 }
502 
503 // Tests that Return() works as an action for void-returning
504 // functions.
505 TEST(ReturnTest, WorksForVoid) {
506  const Action<void(int)> ret = Return(); // NOLINT
507  return ret.Perform(std::make_tuple(1));
508 }
509 
510 // Tests that Return(v) returns v.
511 TEST(ReturnTest, ReturnsGivenValue) {
512  Action<int()> ret = Return(1); // NOLINT
513  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
514 
515  ret = Return(-5);
516  EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
517 }
518 
519 // Tests that Return("string literal") works.
520 TEST(ReturnTest, AcceptsStringLiteral) {
521  Action<const char*()> a1 = Return("Hello");
522  EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
523 
524  Action<std::string()> a2 = Return("world");
525  EXPECT_EQ("world", a2.Perform(std::make_tuple()));
526 }
527 
528 // Test struct which wraps a vector of integers. Used in
529 // 'SupportsWrapperReturnType' test.
530 struct IntegerVectorWrapper {
531  std::vector<int> * v;
532  IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT
533 };
534 
535 // Tests that Return() works when return type is a wrapper type.
536 TEST(ReturnTest, SupportsWrapperReturnType) {
537  // Initialize vector of integers.
538  std::vector<int> v;
539  for (int i = 0; i < 5; ++i) v.push_back(i);
540 
541  // Return() called with 'v' as argument. The Action will return the same data
542  // as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper.
543  Action<IntegerVectorWrapper()> a = Return(v);
544  const std::vector<int>& result = *(a.Perform(std::make_tuple()).v);
545  EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4));
546 }
547 
548 // Tests that Return(v) is covaraint.
549 
550 struct Base {
551  bool operator==(const Base&) { return true; }
552 };
553 
554 struct Derived : public Base {
555  bool operator==(const Derived&) { return true; }
556 };
557 
558 TEST(ReturnTest, IsCovariant) {
559  Base base;
560  Derived derived;
561  Action<Base*()> ret = Return(&base);
562  EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
563 
564  ret = Return(&derived);
565  EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
566 }
567 
568 // Tests that the type of the value passed into Return is converted into T
569 // when the action is cast to Action<T(...)> rather than when the action is
570 // performed. See comments on testing::internal::ReturnAction in
571 // gmock-actions.h for more information.
572 class FromType {
573  public:
574  explicit FromType(bool* is_converted) : converted_(is_converted) {}
575  bool* converted() const { return converted_; }
576 
577  private:
578  bool* const converted_;
579 };
580 
581 class ToType {
582  public:
583  // Must allow implicit conversion due to use in ImplicitCast_<T>.
584  ToType(const FromType& x) { *x.converted() = true; } // NOLINT
585 };
586 
587 TEST(ReturnTest, ConvertsArgumentWhenConverted) {
588  bool converted = false;
589  FromType x(&converted);
590  Action<ToType()> action(Return(x));
591  EXPECT_TRUE(converted) << "Return must convert its argument in its own "
592  << "conversion operator.";
593  converted = false;
594  action.Perform(std::tuple<>());
595  EXPECT_FALSE(converted) << "Action must NOT convert its argument "
596  << "when performed.";
597 }
598 
599 class DestinationType {};
600 
601 class SourceType {
602  public:
603  // Note: a non-const typecast operator.
604  operator DestinationType() { return DestinationType(); }
605 };
606 
607 TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) {
608  SourceType s;
609  Action<DestinationType()> action(Return(s));
610 }
611 
612 // Tests that ReturnNull() returns NULL in a pointer-returning function.
613 TEST(ReturnNullTest, WorksInPointerReturningFunction) {
614  const Action<int*()> a1 = ReturnNull();
615  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
616 
617  const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
618  EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
619 }
620 
621 // Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
622 // functions.
623 TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
624  const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
625  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
626 
627  const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
628  EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
629 }
630 
631 // Tests that ReturnRef(v) works for reference types.
632 TEST(ReturnRefTest, WorksForReference) {
633  const int n = 0;
634  const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
635 
636  EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
637 }
638 
639 // Tests that ReturnRef(v) is covariant.
640 TEST(ReturnRefTest, IsCovariant) {
641  Base base;
642  Derived derived;
643  Action<Base&()> a = ReturnRef(base);
644  EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
645 
646  a = ReturnRef(derived);
647  EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
648 }
649 
650 template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
651 bool CanCallReturnRef(T&&) { return true; }
652 bool CanCallReturnRef(Unused) { return false; }
653 
654 // Tests that ReturnRef(v) is working with non-temporaries (T&)
655 TEST(ReturnRefTest, WorksForNonTemporary) {
656  int scalar_value = 123;
657  EXPECT_TRUE(CanCallReturnRef(scalar_value));
658 
659  std::string non_scalar_value("ABC");
660  EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
661 
662  const int const_scalar_value{321};
663  EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
664 
665  const std::string const_non_scalar_value("CBA");
666  EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
667 }
668 
669 // Tests that ReturnRef(v) is not working with temporaries (T&&)
670 TEST(ReturnRefTest, DoesNotWorkForTemporary) {
671  auto scalar_value = []() -> int { return 123; };
672  EXPECT_FALSE(CanCallReturnRef(scalar_value()));
673 
674  auto non_scalar_value = []() -> std::string { return "ABC"; };
675  EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
676 
677  // cannot use here callable returning "const scalar type",
678  // because such const for scalar return type is ignored
679  EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
680 
681  auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
682  EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
683 }
684 
685 // Tests that ReturnRefOfCopy(v) works for reference types.
686 TEST(ReturnRefOfCopyTest, WorksForReference) {
687  int n = 42;
688  const Action<const int&()> ret = ReturnRefOfCopy(n);
689 
690  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
691  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
692 
693  n = 43;
694  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
695  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
696 }
697 
698 // Tests that ReturnRefOfCopy(v) is covariant.
699 TEST(ReturnRefOfCopyTest, IsCovariant) {
700  Base base;
701  Derived derived;
702  Action<Base&()> a = ReturnRefOfCopy(base);
703  EXPECT_NE(&base, &a.Perform(std::make_tuple()));
704 
705  a = ReturnRefOfCopy(derived);
706  EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
707 }
708 
709 // Tests that ReturnRoundRobin(v) works with initializer lists
710 TEST(ReturnRoundRobinTest, WorksForInitList) {
711  Action<int()> ret = ReturnRoundRobin({1, 2, 3});
712 
713  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
714  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
715  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
716  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
717  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
718  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
719 }
720 
721 // Tests that ReturnRoundRobin(v) works with vectors
722 TEST(ReturnRoundRobinTest, WorksForVector) {
723  std::vector<double> v = {4.4, 5.5, 6.6};
724  Action<double()> ret = ReturnRoundRobin(v);
725 
726  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
727  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
728  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
729  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
730  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
731  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
732 }
733 
734 // Tests that DoDefault() does the default action for the mock method.
735 
736 class MockClass {
737  public:
738  MockClass() {}
739 
740  MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
741  MOCK_METHOD0(Foo, MyNonDefaultConstructible());
742  MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
743  MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
744  MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
745  MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
746  MOCK_METHOD2(TakeUnique,
747  int(const std::unique_ptr<int>&, std::unique_ptr<int>));
748 
749  private:
751 };
752 
753 // Tests that DoDefault() returns the built-in default value for the
754 // return type by default.
755 TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
756  MockClass mock;
757  EXPECT_CALL(mock, IntFunc(_))
758  .WillOnce(DoDefault());
759  EXPECT_EQ(0, mock.IntFunc(true));
760 }
761 
762 // Tests that DoDefault() throws (when exceptions are enabled) or aborts
763 // the process when there is no built-in default value for the return type.
764 TEST(DoDefaultDeathTest, DiesForUnknowType) {
765  MockClass mock;
766  EXPECT_CALL(mock, Foo())
767  .WillRepeatedly(DoDefault());
768 #if GTEST_HAS_EXCEPTIONS
769  EXPECT_ANY_THROW(mock.Foo());
770 #else
772  mock.Foo();
773  }, "");
774 #endif
775 }
776 
777 // Tests that using DoDefault() inside a composite action leads to a
778 // run-time error.
779 
780 void VoidFunc(bool /* flag */) {}
781 
782 TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
783  MockClass mock;
784  EXPECT_CALL(mock, IntFunc(_))
785  .WillRepeatedly(DoAll(Invoke(VoidFunc),
786  DoDefault()));
787 
788  // Ideally we should verify the error message as well. Sadly,
789  // EXPECT_DEATH() can only capture stderr, while Google Mock's
790  // errors are printed on stdout. Therefore we have to settle for
791  // not verifying the message.
793  mock.IntFunc(true);
794  }, "");
795 }
796 
797 // Tests that DoDefault() returns the default value set by
798 // DefaultValue<T>::Set() when it's not overriden by an ON_CALL().
799 TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
800  DefaultValue<int>::Set(1);
801  MockClass mock;
802  EXPECT_CALL(mock, IntFunc(_))
803  .WillOnce(DoDefault());
804  EXPECT_EQ(1, mock.IntFunc(false));
805  DefaultValue<int>::Clear();
806 }
807 
808 // Tests that DoDefault() does the action specified by ON_CALL().
809 TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
810  MockClass mock;
811  ON_CALL(mock, IntFunc(_))
812  .WillByDefault(Return(2));
813  EXPECT_CALL(mock, IntFunc(_))
814  .WillOnce(DoDefault());
815  EXPECT_EQ(2, mock.IntFunc(false));
816 }
817 
818 // Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
819 TEST(DoDefaultTest, CannotBeUsedInOnCall) {
820  MockClass mock;
821  EXPECT_NONFATAL_FAILURE({ // NOLINT
822  ON_CALL(mock, IntFunc(_))
823  .WillByDefault(DoDefault());
824  }, "DoDefault() cannot be used in ON_CALL()");
825 }
826 
827 // Tests that SetArgPointee<N>(v) sets the variable pointed to by
828 // the N-th (0-based) argument to v.
829 TEST(SetArgPointeeTest, SetsTheNthPointee) {
830  typedef void MyFunction(bool, int*, char*);
831  Action<MyFunction> a = SetArgPointee<1>(2);
832 
833  int n = 0;
834  char ch = '\0';
835  a.Perform(std::make_tuple(true, &n, &ch));
836  EXPECT_EQ(2, n);
837  EXPECT_EQ('\0', ch);
838 
839  a = SetArgPointee<2>('a');
840  n = 0;
841  ch = '\0';
842  a.Perform(std::make_tuple(true, &n, &ch));
843  EXPECT_EQ(0, n);
844  EXPECT_EQ('a', ch);
845 }
846 
847 // Tests that SetArgPointee<N>() accepts a string literal.
848 TEST(SetArgPointeeTest, AcceptsStringLiteral) {
849  typedef void MyFunction(std::string*, const char**);
850  Action<MyFunction> a = SetArgPointee<0>("hi");
851  std::string str;
852  const char* ptr = nullptr;
853  a.Perform(std::make_tuple(&str, &ptr));
854  EXPECT_EQ("hi", str);
855  EXPECT_TRUE(ptr == nullptr);
856 
857  a = SetArgPointee<1>("world");
858  str = "";
859  a.Perform(std::make_tuple(&str, &ptr));
860  EXPECT_EQ("", str);
861  EXPECT_STREQ("world", ptr);
862 }
863 
864 TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
865  typedef void MyFunction(const wchar_t**);
866  Action<MyFunction> a = SetArgPointee<0>(L"world");
867  const wchar_t* ptr = nullptr;
868  a.Perform(std::make_tuple(&ptr));
869  EXPECT_STREQ(L"world", ptr);
870 
871 # if GTEST_HAS_STD_WSTRING
872 
873  typedef void MyStringFunction(std::wstring*);
874  Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
875  std::wstring str = L"";
876  a2.Perform(std::make_tuple(&str));
877  EXPECT_EQ(L"world", str);
878 
879 # endif
880 }
881 
882 // Tests that SetArgPointee<N>() accepts a char pointer.
883 TEST(SetArgPointeeTest, AcceptsCharPointer) {
884  typedef void MyFunction(bool, std::string*, const char**);
885  const char* const hi = "hi";
886  Action<MyFunction> a = SetArgPointee<1>(hi);
887  std::string str;
888  const char* ptr = nullptr;
889  a.Perform(std::make_tuple(true, &str, &ptr));
890  EXPECT_EQ("hi", str);
891  EXPECT_TRUE(ptr == nullptr);
892 
893  char world_array[] = "world";
894  char* const world = world_array;
895  a = SetArgPointee<2>(world);
896  str = "";
897  a.Perform(std::make_tuple(true, &str, &ptr));
898  EXPECT_EQ("", str);
899  EXPECT_EQ(world, ptr);
900 }
901 
902 TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
903  typedef void MyFunction(bool, const wchar_t**);
904  const wchar_t* const hi = L"hi";
905  Action<MyFunction> a = SetArgPointee<1>(hi);
906  const wchar_t* ptr = nullptr;
907  a.Perform(std::make_tuple(true, &ptr));
908  EXPECT_EQ(hi, ptr);
909 
910 # if GTEST_HAS_STD_WSTRING
911 
912  typedef void MyStringFunction(bool, std::wstring*);
913  wchar_t world_array[] = L"world";
914  wchar_t* const world = world_array;
915  Action<MyStringFunction> a2 = SetArgPointee<1>(world);
916  std::wstring str;
917  a2.Perform(std::make_tuple(true, &str));
918  EXPECT_EQ(world_array, str);
919 # endif
920 }
921 
922 // Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
923 // the N-th (0-based) argument to v.
924 TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
925  typedef void MyFunction(bool, int*, char*);
926  Action<MyFunction> a = SetArgumentPointee<1>(2);
927 
928  int n = 0;
929  char ch = '\0';
930  a.Perform(std::make_tuple(true, &n, &ch));
931  EXPECT_EQ(2, n);
932  EXPECT_EQ('\0', ch);
933 
934  a = SetArgumentPointee<2>('a');
935  n = 0;
936  ch = '\0';
937  a.Perform(std::make_tuple(true, &n, &ch));
938  EXPECT_EQ(0, n);
939  EXPECT_EQ('a', ch);
940 }
941 
942 // Sample functions and functors for testing Invoke() and etc.
943 int Nullary() { return 1; }
944 
945 class NullaryFunctor {
946  public:
947  int operator()() { return 2; }
948 };
949 
950 bool g_done = false;
951 void VoidNullary() { g_done = true; }
952 
953 class VoidNullaryFunctor {
954  public:
955  void operator()() { g_done = true; }
956 };
957 
958 short Short(short n) { return n; } // NOLINT
959 char Char(char ch) { return ch; }
960 
961 const char* CharPtr(const char* s) { return s; }
962 
963 bool Unary(int x) { return x < 0; }
964 
965 const char* Binary(const char* input, short n) { return input + n; } // NOLINT
966 
967 void VoidBinary(int, char) { g_done = true; }
968 
969 int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
970 
971 int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
972 
973 class Foo {
974  public:
975  Foo() : value_(123) {}
976 
977  int Nullary() const { return value_; }
978 
979  private:
980  int value_;
981 };
982 
983 // Tests InvokeWithoutArgs(function).
984 TEST(InvokeWithoutArgsTest, Function) {
985  // As an action that takes one argument.
986  Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
987  EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
988 
989  // As an action that takes two arguments.
990  Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
991  EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
992 
993  // As an action that returns void.
994  Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
995  g_done = false;
996  a3.Perform(std::make_tuple(1));
997  EXPECT_TRUE(g_done);
998 }
999 
1000 // Tests InvokeWithoutArgs(functor).
1001 TEST(InvokeWithoutArgsTest, Functor) {
1002  // As an action that takes no argument.
1003  Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
1004  EXPECT_EQ(2, a.Perform(std::make_tuple()));
1005 
1006  // As an action that takes three arguments.
1007  Action<int(int, double, char)> a2 = // NOLINT
1008  InvokeWithoutArgs(NullaryFunctor());
1009  EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
1010 
1011  // As an action that returns void.
1012  Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
1013  g_done = false;
1014  a3.Perform(std::make_tuple());
1015  EXPECT_TRUE(g_done);
1016 }
1017 
1018 // Tests InvokeWithoutArgs(obj_ptr, method).
1019 TEST(InvokeWithoutArgsTest, Method) {
1020  Foo foo;
1021  Action<int(bool, char)> a = // NOLINT
1023  EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
1024 }
1025 
1026 // Tests using IgnoreResult() on a polymorphic action.
1027 TEST(IgnoreResultTest, PolymorphicAction) {
1028  Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
1029  a.Perform(std::make_tuple(1));
1030 }
1031 
1032 // Tests using IgnoreResult() on a monomorphic action.
1033 
1034 int ReturnOne() {
1035  g_done = true;
1036  return 1;
1037 }
1038 
1039 TEST(IgnoreResultTest, MonomorphicAction) {
1040  g_done = false;
1041  Action<void()> a = IgnoreResult(Invoke(ReturnOne));
1042  a.Perform(std::make_tuple());
1043  EXPECT_TRUE(g_done);
1044 }
1045 
1046 // Tests using IgnoreResult() on an action that returns a class type.
1047 
1048 MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
1049  g_done = true;
1050  return MyNonDefaultConstructible(42);
1051 }
1052 
1053 TEST(IgnoreResultTest, ActionReturningClass) {
1054  g_done = false;
1055  Action<void(int)> a =
1056  IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
1057  a.Perform(std::make_tuple(2));
1058  EXPECT_TRUE(g_done);
1059 }
1060 
1061 TEST(AssignTest, Int) {
1062  int x = 0;
1063  Action<void(int)> a = Assign(&x, 5);
1064  a.Perform(std::make_tuple(0));
1065  EXPECT_EQ(5, x);
1066 }
1067 
1068 TEST(AssignTest, String) {
1069  ::std::string x;
1070  Action<void(void)> a = Assign(&x, "Hello, world");
1071  a.Perform(std::make_tuple());
1072  EXPECT_EQ("Hello, world", x);
1073 }
1074 
1075 TEST(AssignTest, CompatibleTypes) {
1076  double x = 0;
1077  Action<void(int)> a = Assign(&x, 5);
1078  a.Perform(std::make_tuple(0));
1079  EXPECT_DOUBLE_EQ(5, x);
1080 }
1081 
1082 
1083 // Tests using WithArgs and with an action that takes 1 argument.
1084 TEST(WithArgsTest, OneArg) {
1085  Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
1086  EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
1087  EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
1088 }
1089 
1090 // Tests using WithArgs with an action that takes 2 arguments.
1091 TEST(WithArgsTest, TwoArgs) {
1092  Action<const char*(const char* s, double x, short n)> a = // NOLINT
1093  WithArgs<0, 2>(Invoke(Binary));
1094  const char s[] = "Hello";
1095  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
1096 }
1097 
1098 struct ConcatAll {
1099  std::string operator()() const { return {}; }
1100  template <typename... I>
1101  std::string operator()(const char* a, I... i) const {
1102  return a + ConcatAll()(i...);
1103  }
1104 };
1105 
1106 // Tests using WithArgs with an action that takes 10 arguments.
1107 TEST(WithArgsTest, TenArgs) {
1108  Action<std::string(const char*, const char*, const char*, const char*)> a =
1109  WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
1110  EXPECT_EQ("0123210123",
1111  a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
1112  CharPtr("3"))));
1113 }
1114 
1115 // Tests using WithArgs with an action that is not Invoke().
1116 class SubtractAction : public ActionInterface<int(int, int)> {
1117  public:
1118  int Perform(const std::tuple<int, int>& args) override {
1119  return std::get<0>(args) - std::get<1>(args);
1120  }
1121 };
1122 
1123 TEST(WithArgsTest, NonInvokeAction) {
1124  Action<int(const std::string&, int, int)> a =
1125  WithArgs<2, 1>(MakeAction(new SubtractAction));
1126  std::tuple<std::string, int, int> dummy =
1127  std::make_tuple(std::string("hi"), 2, 10);
1128  EXPECT_EQ(8, a.Perform(dummy));
1129 }
1130 
1131 // Tests using WithArgs to pass all original arguments in the original order.
1132 TEST(WithArgsTest, Identity) {
1133  Action<int(int x, char y, short z)> a = // NOLINT
1134  WithArgs<0, 1, 2>(Invoke(Ternary));
1135  EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
1136 }
1137 
1138 // Tests using WithArgs with repeated arguments.
1139 TEST(WithArgsTest, RepeatedArguments) {
1140  Action<int(bool, int m, int n)> a = // NOLINT
1141  WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
1142  EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
1143 }
1144 
1145 // Tests using WithArgs with reversed argument order.
1146 TEST(WithArgsTest, ReversedArgumentOrder) {
1147  Action<const char*(short n, const char* input)> a = // NOLINT
1148  WithArgs<1, 0>(Invoke(Binary));
1149  const char s[] = "Hello";
1150  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
1151 }
1152 
1153 // Tests using WithArgs with compatible, but not identical, argument types.
1154 TEST(WithArgsTest, ArgsOfCompatibleTypes) {
1155  Action<long(short x, char y, double z, char c)> a = // NOLINT
1156  WithArgs<0, 1, 3>(Invoke(Ternary));
1157  EXPECT_EQ(123,
1158  a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
1159 }
1160 
1161 // Tests using WithArgs with an action that returns void.
1162 TEST(WithArgsTest, VoidAction) {
1163  Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
1164  g_done = false;
1165  a.Perform(std::make_tuple(1.5, 'a', 3));
1166  EXPECT_TRUE(g_done);
1167 }
1168 
1169 TEST(WithArgsTest, ReturnReference) {
1170  Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
1171  int i = 0;
1172  const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
1173  EXPECT_EQ(&i, &res);
1174 }
1175 
1176 TEST(WithArgsTest, InnerActionWithConversion) {
1177  Action<Derived*()> inner = [] { return nullptr; };
1178  Action<Base*(double)> a = testing::WithoutArgs(inner);
1179  EXPECT_EQ(nullptr, a.Perform(std::make_tuple(1.1)));
1180 }
1181 
1182 #if !GTEST_OS_WINDOWS_MOBILE
1183 
1184 class SetErrnoAndReturnTest : public testing::Test {
1185  protected:
1186  void SetUp() override { errno = 0; }
1187  void TearDown() override { errno = 0; }
1188 };
1189 
1190 TEST_F(SetErrnoAndReturnTest, Int) {
1191  Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
1192  EXPECT_EQ(-5, a.Perform(std::make_tuple()));
1193  EXPECT_EQ(ENOTTY, errno);
1194 }
1195 
1196 TEST_F(SetErrnoAndReturnTest, Ptr) {
1197  int x;
1198  Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
1199  EXPECT_EQ(&x, a.Perform(std::make_tuple()));
1200  EXPECT_EQ(ENOTTY, errno);
1201 }
1202 
1203 TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
1204  Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
1205  EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
1206  EXPECT_EQ(EINVAL, errno);
1207 }
1208 
1209 #endif // !GTEST_OS_WINDOWS_MOBILE
1210 
1211 // Tests ByRef().
1212 
1213 // Tests that the result of ByRef() is copyable.
1214 TEST(ByRefTest, IsCopyable) {
1215  const std::string s1 = "Hi";
1216  const std::string s2 = "Hello";
1217 
1218  auto ref_wrapper = ByRef(s1);
1219  const std::string& r1 = ref_wrapper;
1220  EXPECT_EQ(&s1, &r1);
1221 
1222  // Assigns a new value to ref_wrapper.
1223  ref_wrapper = ByRef(s2);
1224  const std::string& r2 = ref_wrapper;
1225  EXPECT_EQ(&s2, &r2);
1226 
1227  auto ref_wrapper1 = ByRef(s1);
1228  // Copies ref_wrapper1 to ref_wrapper.
1229  ref_wrapper = ref_wrapper1;
1230  const std::string& r3 = ref_wrapper;
1231  EXPECT_EQ(&s1, &r3);
1232 }
1233 
1234 // Tests using ByRef() on a const value.
1235 TEST(ByRefTest, ConstValue) {
1236  const int n = 0;
1237  // int& ref = ByRef(n); // This shouldn't compile - we have a
1238  // negative compilation test to catch it.
1239  const int& const_ref = ByRef(n);
1240  EXPECT_EQ(&n, &const_ref);
1241 }
1242 
1243 // Tests using ByRef() on a non-const value.
1244 TEST(ByRefTest, NonConstValue) {
1245  int n = 0;
1246 
1247  // ByRef(n) can be used as either an int&,
1248  int& ref = ByRef(n);
1249  EXPECT_EQ(&n, &ref);
1250 
1251  // or a const int&.
1252  const int& const_ref = ByRef(n);
1253  EXPECT_EQ(&n, &const_ref);
1254 }
1255 
1256 // Tests explicitly specifying the type when using ByRef().
1257 TEST(ByRefTest, ExplicitType) {
1258  int n = 0;
1259  const int& r1 = ByRef<const int>(n);
1260  EXPECT_EQ(&n, &r1);
1261 
1262  // ByRef<char>(n); // This shouldn't compile - we have a negative
1263  // compilation test to catch it.
1264 
1265  Derived d;
1266  Derived& r2 = ByRef<Derived>(d);
1267  EXPECT_EQ(&d, &r2);
1268 
1269  const Derived& r3 = ByRef<const Derived>(d);
1270  EXPECT_EQ(&d, &r3);
1271 
1272  Base& r4 = ByRef<Base>(d);
1273  EXPECT_EQ(&d, &r4);
1274 
1275  const Base& r5 = ByRef<const Base>(d);
1276  EXPECT_EQ(&d, &r5);
1277 
1278  // The following shouldn't compile - we have a negative compilation
1279  // test for it.
1280  //
1281  // Base b;
1282  // ByRef<Derived>(b);
1283 }
1284 
1285 // Tests that Google Mock prints expression ByRef(x) as a reference to x.
1286 TEST(ByRefTest, PrintsCorrectly) {
1287  int n = 42;
1288  ::std::stringstream expected, actual;
1291  EXPECT_EQ(expected.str(), actual.str());
1292 }
1293 
1294 struct UnaryConstructorClass {
1295  explicit UnaryConstructorClass(int v) : value(v) {}
1296  int value;
1297 };
1298 
1299 // Tests using ReturnNew() with a unary constructor.
1300 TEST(ReturnNewTest, Unary) {
1301  Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
1302  UnaryConstructorClass* c = a.Perform(std::make_tuple());
1303  EXPECT_EQ(4000, c->value);
1304  delete c;
1305 }
1306 
1307 TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
1308  Action<UnaryConstructorClass*(bool, int)> a =
1309  ReturnNew<UnaryConstructorClass>(4000);
1310  UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
1311  EXPECT_EQ(4000, c->value);
1312  delete c;
1313 }
1314 
1315 TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
1316  Action<const UnaryConstructorClass*()> a =
1317  ReturnNew<UnaryConstructorClass>(4000);
1318  const UnaryConstructorClass* c = a.Perform(std::make_tuple());
1319  EXPECT_EQ(4000, c->value);
1320  delete c;
1321 }
1322 
1323 class TenArgConstructorClass {
1324  public:
1325  TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
1326  int a8, int a9, int a10)
1327  : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
1328  int value_;
1329 };
1330 
1331 // Tests using ReturnNew() with a 10-argument constructor.
1332 TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
1333  Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
1334  1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
1335  0);
1336  TenArgConstructorClass* c = a.Perform(std::make_tuple());
1337  EXPECT_EQ(1234567890, c->value_);
1338  delete c;
1339 }
1340 
1341 std::unique_ptr<int> UniquePtrSource() {
1342  return std::unique_ptr<int>(new int(19));
1343 }
1344 
1345 std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
1346  std::vector<std::unique_ptr<int>> out;
1347  out.emplace_back(new int(7));
1348  return out;
1349 }
1350 
1351 TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
1352  MockClass mock;
1353  std::unique_ptr<int> i(new int(19));
1354  EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
1355  EXPECT_CALL(mock, MakeVectorUnique())
1356  .WillOnce(Return(ByMove(VectorUniquePtrSource())));
1357  Derived* d = new Derived;
1358  EXPECT_CALL(mock, MakeUniqueBase())
1359  .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
1360 
1361  std::unique_ptr<int> result1 = mock.MakeUnique();
1362  EXPECT_EQ(19, *result1);
1363 
1364  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1365  EXPECT_EQ(1u, vresult.size());
1366  EXPECT_NE(nullptr, vresult[0]);
1367  EXPECT_EQ(7, *vresult[0]);
1368 
1369  std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
1370  EXPECT_EQ(d, result2.get());
1371 }
1372 
1373 TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
1374  testing::MockFunction<void()> mock_function;
1375  MockClass mock;
1376  std::unique_ptr<int> i(new int(19));
1377  EXPECT_CALL(mock_function, Call());
1378  EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll(
1379  InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call),
1380  Return(ByMove(std::move(i)))));
1381 
1382  std::unique_ptr<int> result1 = mock.MakeUnique();
1383  EXPECT_EQ(19, *result1);
1384 }
1385 
1386 TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
1387  MockClass mock;
1388 
1389  // Check default value
1390  DefaultValue<std::unique_ptr<int>>::SetFactory([] {
1391  return std::unique_ptr<int>(new int(42));
1392  });
1393  EXPECT_EQ(42, *mock.MakeUnique());
1394 
1395  EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
1396  EXPECT_CALL(mock, MakeVectorUnique())
1397  .WillRepeatedly(Invoke(VectorUniquePtrSource));
1398  std::unique_ptr<int> result1 = mock.MakeUnique();
1399  EXPECT_EQ(19, *result1);
1400  std::unique_ptr<int> result2 = mock.MakeUnique();
1401  EXPECT_EQ(19, *result2);
1402  EXPECT_NE(result1, result2);
1403 
1404  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
1405  EXPECT_EQ(1u, vresult.size());
1406  EXPECT_NE(nullptr, vresult[0]);
1407  EXPECT_EQ(7, *vresult[0]);
1408 }
1409 
1410 TEST(MockMethodTest, CanTakeMoveOnlyValue) {
1411  MockClass mock;
1412  auto make = [](int i) { return std::unique_ptr<int>(new int(i)); };
1413 
1414  EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
1415  return *i;
1416  });
1417  // DoAll() does not compile, since it would move from its arguments twice.
1418  // EXPECT_CALL(mock, TakeUnique(_, _))
1419  // .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
1420  // Return(1)));
1421  EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
1422  .WillOnce(Return(-7))
1423  .RetiresOnSaturation();
1424  EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
1425  .WillOnce(Return(-1))
1426  .RetiresOnSaturation();
1427 
1428  EXPECT_EQ(5, mock.TakeUnique(make(5)));
1429  EXPECT_EQ(-7, mock.TakeUnique(make(7)));
1430  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1431  EXPECT_EQ(7, mock.TakeUnique(make(7)));
1432  EXPECT_EQ(-1, mock.TakeUnique({}));
1433 
1434  // Some arguments are moved, some passed by reference.
1435  auto lvalue = make(6);
1436  EXPECT_CALL(mock, TakeUnique(_, _))
1437  .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
1438  return *i * *j;
1439  });
1440  EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
1441 
1442  // The unique_ptr can be saved by the action.
1443  std::unique_ptr<int> saved;
1444  EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
1445  saved = std::move(i);
1446  return 0;
1447  });
1448  EXPECT_EQ(0, mock.TakeUnique(make(42)));
1449  EXPECT_EQ(42, *saved);
1450 }
1451 
1452 
1453 // Tests for std::function based action.
1454 
1455 int Add(int val, int& ref, int* ptr) { // NOLINT
1456  int result = val + ref + *ptr;
1457  ref = 42;
1458  *ptr = 43;
1459  return result;
1460 }
1461 
1462 int Deref(std::unique_ptr<int> ptr) { return *ptr; }
1463 
1464 struct Double {
1465  template <typename T>
1466  T operator()(T t) { return 2 * t; }
1467 };
1468 
1469 std::unique_ptr<int> UniqueInt(int i) {
1470  return std::unique_ptr<int>(new int(i));
1471 }
1472 
1473 TEST(FunctorActionTest, ActionFromFunction) {
1474  Action<int(int, int&, int*)> a = &Add;
1475  int x = 1, y = 2, z = 3;
1476  EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
1477  EXPECT_EQ(42, y);
1478  EXPECT_EQ(43, z);
1479 
1480  Action<int(std::unique_ptr<int>)> a1 = &Deref;
1481  EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
1482 }
1483 
1484 TEST(FunctorActionTest, ActionFromLambda) {
1485  Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
1486  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
1487  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
1488 
1489  std::unique_ptr<int> saved;
1490  Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
1491  saved = std::move(p);
1492  };
1493  a2.Perform(std::make_tuple(UniqueInt(5)));
1494  EXPECT_EQ(5, *saved);
1495 }
1496 
1497 TEST(FunctorActionTest, PolymorphicFunctor) {
1498  Action<int(int)> ai = Double();
1499  EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
1500  Action<double(double)> ad = Double(); // Double? Double double!
1501  EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
1502 }
1503 
1504 TEST(FunctorActionTest, TypeConversion) {
1505  // Numeric promotions are allowed.
1506  const Action<bool(int)> a1 = [](int i) { return i > 1; };
1507  const Action<int(bool)> a2 = Action<int(bool)>(a1);
1508  EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
1509  EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
1510 
1511  // Implicit constructors are allowed.
1512  const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
1513  const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
1514  EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
1515  EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
1516 
1517  // Also between the lambda and the action itself.
1518  const Action<bool(std::string)> x1 = [](Unused) { return 42; };
1519  const Action<bool(std::string)> x2 = [] { return 42; };
1520  EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
1521  EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
1522 
1523  // Ensure decay occurs where required.
1524  std::function<int()> f = [] { return 7; };
1525  Action<int(int)> d = f;
1526  f = nullptr;
1527  EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
1528 
1529  // Ensure creation of an empty action succeeds.
1530  Action<void(int)>(nullptr);
1531 }
1532 
1533 TEST(FunctorActionTest, UnusedArguments) {
1534  // Verify that users can ignore uninteresting arguments.
1535  Action<int(int, double y, double z)> a =
1536  [](int i, Unused, Unused) { return 2 * i; };
1537  std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
1538  EXPECT_EQ(6, a.Perform(dummy));
1539 }
1540 
1541 // Test that basic built-in actions work with move-only arguments.
1542 TEST(MoveOnlyArgumentsTest, ReturningActions) {
1543  Action<int(std::unique_ptr<int>)> a = Return(1);
1544  EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
1545 
1546  a = testing::WithoutArgs([]() { return 7; });
1547  EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
1548 
1549  Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
1550  int x = 0;
1551  a2.Perform(std::make_tuple(nullptr, &x));
1552  EXPECT_EQ(x, 3);
1553 }
1554 
1555 ACTION(ReturnArity) {
1557 }
1558 
1559 TEST(ActionMacro, LargeArity) {
1560  EXPECT_EQ(
1561  1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
1562  EXPECT_EQ(
1563  10,
1564  testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
1565  ReturnArity())
1566  .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
1567  EXPECT_EQ(
1568  20,
1569  testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
1570  int, int, int, int, int, int, int, int, int)>(
1571  ReturnArity())
1572  .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
1573  14, 15, 16, 17, 18, 19)));
1574 }
1575 
1576 } // Unnamed namespace
1577 
1578 #ifdef _MSC_VER
1579 #if _MSC_VER == 1900
1580 # pragma warning(pop)
1581 #endif
1582 #endif
1583 
const char * p
#define EXPECT_DOUBLE_EQ(val1, val2)
Definition: gtest.h:2143
#define EXPECT_DEATH_IF_SUPPORTED(statement, regex)
PolymorphicAction< internal::ReturnNullAction > ReturnNull()
void f()
internal::IgnoredValue Unused
#define EXPECT_NONFATAL_FAILURE(statement, substr)
internal::ReturnRoundRobinAction< T > ReturnRoundRobin(std::vector< T > vals)
int SumOf4(int a, int b, int c, int d)
PolymorphicAction< internal::AssignAction< T1, T2 > > Assign(T1 *ptr, T2 val)
#define EXPECT_NE(val1, val2)
Definition: gtest.h:2040
#define TEST_F(test_fixture, test_name)
Definition: gtest.h:2379
#define MOCK_METHOD0(m,...)
internal::DoAllAction< typename std::decay< Action >::type...> DoAll(Action &&...action)
#define TEST(test_suite_name, test_name)
Definition: gtest.h:2348
#define ON_CALL(obj, call)
#define EXPECT_ANY_THROW(statement)
Definition: gtest.h:1967
internal::InvokeWithoutArgsAction< typename std::decay< FunctionImpl >::type > InvokeWithoutArgs(FunctionImpl function_impl)
internal::WithArgsAction< typename std::decay< InnerAction >::type, k, ks...> WithArgs(InnerAction &&action)
#define MOCK_METHOD2(m,...)
PolymorphicAction< Impl > MakePolymorphicAction(const Impl &impl)
virtual void SetUp()
Definition: gtest.cc:2439
inline::std::reference_wrapper< T > ByRef(T &l_value)
PolymorphicAction< internal::SetErrnoAndReturnAction< T > > SetErrnoAndReturn(int errval, T result)
internal::ReturnRefAction< R > ReturnRef(R &x)
expr val()
std::decay< FunctionImpl >::type Invoke(FunctionImpl &&function_impl)
#define T
Definition: Sacado_rad.hpp:553
int value_
expr expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c *expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr1 c expr2 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 expr2 expr1 expr2 expr1 expr1 expr1 c
FloatingPoint< double > Double
internal::WithArgsAction< typename std::decay< InnerAction >::type > WithoutArgs(InnerAction &&action)
internal::ReturnRefOfCopyAction< R > ReturnRefOfCopy(const R &x)
virtual void TearDown()
Definition: gtest.cc:2445
void UniversalPrint(const T &value,::std::ostream *os)
#define ACTION(name)
ADVar foo(double d, ADVar x, ADVar y)
#define EXPECT_STREQ(s1, s2)
Definition: gtest.h:2107
const char * Binary(const char *input, short n)
#define MOCK_METHOD1(m,...)
internal::SetArgumentPointeeAction< N, T > SetArgPointee(T value)
void
Definition: uninit.c:105
int value
Uncopyable z
#define EXPECT_THAT(value, matcher)
internal::DoDefaultAction DoDefault()
internal::ReturnAction< R > Return(R value)
#define EXPECT_CALL(obj, call)
#define Method
bool operator==(const Handle< T > &h1, const Handle< T > &h2)
Compare two handles.
#define EXPECT_EQ(val1, val2)
Definition: gtest.h:2038
#define GTEST_DISALLOW_COPY_AND_ASSIGN_(type)
Definition: gtest-port.h:693
internal::SetArgumentPointeeAction< N, T > SetArgumentPointee(T value)
internal::ByMoveWrapper< R > ByMove(R x)
internal::ReturnNewAction< T, typename std::decay< Params >::type...> ReturnNew(Params &&...params)
#define EXPECT_TRUE(condition)
Definition: gtest.h:1979
static void Print(const T &value,::std::ostream *os)
internal::IgnoreResultAction< A > IgnoreResult(const A &an_action)
#define EXPECT_FALSE(condition)
Definition: gtest.h:1982
AssertionResult IsNull(const char *str)
int n
const double y
Action< F > MakeAction(ActionInterface< F > *impl)
static ExpectedAnswer expected[4]