MOOCHO (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
NLPInterfacePack_CalcFiniteDiffProd.hpp
Go to the documentation of this file.
1 // @HEADER
2 // ***********************************************************************
3 //
4 // Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
5 // Copyright (2003) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
38 //
39 // ***********************************************************************
40 // @HEADER
41 
42 #ifndef CALC_FINITE_DIFF_FIRST_DERIVATIVE_PRODUCT_H
43 #define CALC_FINITE_DIFF_FIRST_DERIVATIVE_PRODUCT_H
44 
47 
48 namespace NLPInterfacePack {
49 
121 public:
122 
132  };
137  };
156  STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, fd_step_size_min );
161 
164  EFDMethodOrder fd_method_order = FD_ORDER_FOUR_AUTO
165  ,EFDStepSelect fd_step_select = FD_STEP_ABSOLUTE
166  ,value_type fd_step_size = -1.0
167  ,value_type fd_step_size_min = -1.0
168  ,value_type fd_step_size_f = -1.0
169  ,value_type fd_step_size_c = -1.0
170  );
171 
173  virtual ~CalcFiniteDiffProd() {}
174 
224  virtual bool calc_deriv_product(
225  const Vector &xo
226  ,const Vector *xl
227  ,const Vector *xu
228  ,const Vector &v
229  ,const value_type *fo
230  ,const Vector *co
231  ,bool check_nan_inf
232  ,NLP *nlp
233  ,value_type *Gf_prod
234  ,VectorMutable *Gc_prod
235  ,std::ostream *out
236  ,bool trace = false
237  ,bool dump_all = false
238  ) const;
239 
240 }; // end class CalcFiniteDiffProd
241 
242 } // end namespace NLPInterfacePack
243 
244 #endif // CALC_FINITE_DIFF_FIRST_DERIVATIVE_PRODUCT_H
Use FD_ORDER_FOUR_CENTRAL when not limited by bounds, otherwise use FD_ORDER_FOUR.
CalcFiniteDiffProd(EFDMethodOrder fd_method_order=FD_ORDER_FOUR_AUTO, EFDStepSelect fd_step_select=FD_STEP_ABSOLUTE, value_type fd_step_size=-1.0, value_type fd_step_size_min=-1.0, value_type fd_step_size_f=-1.0, value_type fd_step_size_c=-1.0)
Use O(eps^2) one sided finite differences (cramped bounds)
Strategy interface for computing the product of the derivatives of the functions of an NLP along give...
std::ostream * out
STANDARD_MEMBER_COMPOSITION_MEMBERS(EFDMethodOrder, fd_method_order)
NLP interface class {abstract}.
virtual bool calc_deriv_product(const Vector &xo, const Vector *xl, const Vector *xu, const Vector &v, const value_type *fo, const Vector *co, bool check_nan_inf, NLP *nlp, value_type *Gf_prod, VectorMutable *Gc_prod, std::ostream *out, bool trace=false, bool dump_all=false) const
Compute the directional derivatives by finite differences.
AbstractLinAlgPack::value_type value_type
Use FD_ORDER_TWO_CENTRAL when not limited by bounds, otherwise use FD_ORDER_TWO.
Use O(eps^4) one sided finite differences (cramped bounds)
Use O(eps) one sided finite differences (cramped bounds)