Tempus  Version of the Day
Time Integration
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Pages
Tempus_IMEX_RK_PartitionedTest.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ****************************************************************************
3 // Tempus: Copyright (2017) Sandia Corporation
4 //
5 // Distributed under BSD 3-clause license (See accompanying file Copyright.txt)
6 // ****************************************************************************
7 // @HEADER
8 
9 #include "Teuchos_UnitTestHarness.hpp"
10 #include "Teuchos_XMLParameterListHelpers.hpp"
11 #include "Teuchos_TimeMonitor.hpp"
12 
13 #include "Thyra_VectorStdOps.hpp"
14 
15 #include "Tempus_IntegratorBasic.hpp"
16 #include "Tempus_WrapperModelEvaluatorPairPartIMEX_Basic.hpp"
17 #include "Tempus_StepperIMEX_RK_Partition.hpp"
18 
19 
20 #include "../TestModels/VanDerPol_IMEX_ExplicitModel.hpp"
21 #include "../TestModels/VanDerPol_IMEXPart_ImplicitModel.hpp"
22 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
23 
24 #include <fstream>
25 #include <vector>
26 
27 namespace Tempus_Test {
28 
29 using Teuchos::RCP;
30 using Teuchos::rcp;
31 using Teuchos::rcp_const_cast;
32 using Teuchos::ParameterList;
33 using Teuchos::sublist;
34 using Teuchos::getParametersFromXmlFile;
35 
39 
40 
41 // ************************************************************
42 // ************************************************************
43 TEUCHOS_UNIT_TEST(IMEX_RK_Partitioned, ConstructingFromDefaults)
44 {
45  double dt = 0.025;
46 
47  // Read params from .xml file
48  RCP<ParameterList> pList =
49  getParametersFromXmlFile("Tempus_IMEX_RK_VanDerPol.xml");
50  RCP<ParameterList> pl = sublist(pList, "Tempus", true);
51 
52  // Setup the explicit VanDerPol ModelEvaluator
53  RCP<ParameterList> vdpmPL = sublist(pList, "VanDerPolModel", true);
54  const bool useProductVector = true;
55  auto explicitModel = rcp(new VanDerPol_IMEX_ExplicitModel<double>(vdpmPL, useProductVector));
56 
57  // Setup the implicit VanDerPol ModelEvaluator (reuse vdpmPL)
58  auto implicitModel = rcp(new VanDerPol_IMEXPart_ImplicitModel<double>(vdpmPL));
59 
60  // Setup the IMEX Pair ModelEvaluator
61  const int numExplicitBlocks = 1;
62  const int parameterIndex = 4;
64  explicitModel, implicitModel,
65  numExplicitBlocks, parameterIndex));
66 
67 
68  // Setup Stepper for field solve ----------------------------
69  auto stepper = rcp(new Tempus::StepperIMEX_RK_Partition<double>());
70  stepper->setModel(model);
71  stepper->initialize();
72 
73  // Setup TimeStepControl ------------------------------------
74  auto timeStepControl = rcp(new Tempus::TimeStepControl<double>());
75  ParameterList tscPL = pl->sublist("Default Integrator")
76  .sublist("Time Step Control");
77  timeStepControl->setStepType (tscPL.get<std::string>("Integrator Step Type"));
78  timeStepControl->setInitIndex(tscPL.get<int> ("Initial Time Index"));
79  timeStepControl->setInitTime (tscPL.get<double>("Initial Time"));
80  timeStepControl->setFinalTime(tscPL.get<double>("Final Time"));
81  timeStepControl->setInitTimeStep(dt);
82  timeStepControl->initialize();
83 
84  // Setup initial condition SolutionState --------------------
85  Thyra::ModelEvaluatorBase::InArgs<double> inArgsIC =
86  stepper->getModel()->getNominalValues();
87  auto icSolution = rcp_const_cast<Thyra::VectorBase<double> > (inArgsIC.get_x());
88  auto icState = Tempus::createSolutionStateX(icSolution);
89  icState->setTime (timeStepControl->getInitTime());
90  icState->setIndex (timeStepControl->getInitIndex());
91  icState->setTimeStep(0.0);
92  icState->setOrder (stepper->getOrder());
93  icState->setSolutionStatus(Tempus::Status::PASSED); // ICs are passing.
94 
95  // Setup SolutionHistory ------------------------------------
96  auto solutionHistory = rcp(new Tempus::SolutionHistory<double>());
97  solutionHistory->setName("Forward States");
98  solutionHistory->setStorageType(Tempus::STORAGE_TYPE_STATIC);
99  solutionHistory->setStorageLimit(2);
100  solutionHistory->addState(icState);
101 
102  // Setup Integrator -----------------------------------------
103  RCP<Tempus::IntegratorBasic<double> > integrator =
104  Tempus::integratorBasic<double>();
105  integrator->setStepperWStepper(stepper);
106  integrator->setTimeStepControl(timeStepControl);
107  integrator->setSolutionHistory(solutionHistory);
108  //integrator->setObserver(...);
109  integrator->initialize();
110 
111 
112  // Integrate to timeMax
113  bool integratorStatus = integrator->advanceTime();
114  TEST_ASSERT(integratorStatus)
115 
116 
117  // Test if at 'Final Time'
118  double time = integrator->getTime();
119  double timeFinal =pl->sublist("Default Integrator")
120  .sublist("Time Step Control").get<double>("Final Time");
121  TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
122 
123  // Time-integrated solution and the exact solution
124  RCP<Thyra::VectorBase<double> > x = integrator->getX();
125 
126  // Check the order and intercept
127  std::cout << " Stepper = " << stepper->description() << std::endl;
128  std::cout << " =========================" << std::endl;
129  std::cout << " Computed solution: " << get_ele(*(x ), 0) << " "
130  << get_ele(*(x ), 1) << std::endl;
131  std::cout << " =========================" << std::endl;
132  TEST_FLOATING_EQUALITY(get_ele(*(x), 0), 1.810210, 1.0e-4 );
133  TEST_FLOATING_EQUALITY(get_ele(*(x), 1), -0.754602, 1.0e-4 );
134 }
135 
136 
137 // ************************************************************
138 // ************************************************************
139 TEUCHOS_UNIT_TEST(IMEX_RK_Partitioned, VanDerPol)
140 {
141  std::vector<std::string> stepperTypes;
142  stepperTypes.push_back("Partitioned IMEX RK 1st order");
143  stepperTypes.push_back("Partitioned IMEX RK SSP2" );
144  stepperTypes.push_back("Partitioned IMEX RK ARS 233" );
145  stepperTypes.push_back("General Partitioned IMEX RK" );
146 
147  std::vector<double> stepperOrders;
148  stepperOrders.push_back(1.07964);
149  stepperOrders.push_back(2.00408);
150  stepperOrders.push_back(2.70655);
151  stepperOrders.push_back(2.00211);
152 
153  std::vector<double> stepperErrors;
154  stepperErrors.push_back(0.0046423);
155  stepperErrors.push_back(0.0154534);
156  stepperErrors.push_back(0.000298908);
157  stepperErrors.push_back(0.0071546);
158 
159  std::vector<double> stepperInitDt;
160  stepperInitDt.push_back(0.0125);
161  stepperInitDt.push_back(0.05);
162  stepperInitDt.push_back(0.05);
163  stepperInitDt.push_back(0.05);
164 
165  std::vector<std::string>::size_type m;
166  for(m = 0; m != stepperTypes.size(); m++) {
167 
168  std::string stepperType = stepperTypes[m];
169  std::string stepperName = stepperTypes[m];
170  std::replace(stepperName.begin(), stepperName.end(), ' ', '_');
171  std::replace(stepperName.begin(), stepperName.end(), '/', '.');
172 
173  RCP<Tempus::IntegratorBasic<double> > integrator;
174  std::vector<RCP<Thyra::VectorBase<double>>> solutions;
175  std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
176  std::vector<double> StepSize;
177  std::vector<double> xErrorNorm;
178  std::vector<double> xDotErrorNorm;
179 
180  const int nTimeStepSizes = 3; // 6 for error plot
181  double dt = stepperInitDt[m];
182  double time = 0.0;
183  for (int n=0; n<nTimeStepSizes; n++) {
184 
185  // Read params from .xml file
186  RCP<ParameterList> pList =
187  getParametersFromXmlFile("Tempus_IMEX_RK_VanDerPol.xml");
188 
189  // Setup the explicit VanDerPol ModelEvaluator
190  RCP<ParameterList> vdpmPL = sublist(pList, "VanDerPolModel", true);
191  const bool useProductVector = true;
192  auto explicitModel =
193  rcp(new VanDerPol_IMEX_ExplicitModel<double>(vdpmPL, useProductVector));
194 
195  // Setup the implicit VanDerPol ModelEvaluator (reuse vdpmPL)
196  auto implicitModel =
198 
199  // Setup the IMEX Pair ModelEvaluator
200  const int numExplicitBlocks = 1;
201  const int parameterIndex = 4;
202  auto model =
204  explicitModel, implicitModel,
205  numExplicitBlocks, parameterIndex));
206 
207  // Set the Stepper
208  RCP<ParameterList> pl = sublist(pList, "Tempus", true);
209 
210  if (stepperType == "General Partitioned IMEX RK"){
211  // use the appropriate stepper sublist
212  pl->sublist("Default Integrator").set("Stepper Name", "General IMEX RK");
213  } else {
214  pl->sublist("Default Stepper").set("Stepper Type", stepperType);
215  }
216 
217  // Set the step size
218  if (n == nTimeStepSizes-1) dt /= 10.0;
219  else dt /= 2;
220 
221  // Setup the Integrator and reset initial time step
222  pl->sublist("Default Integrator")
223  .sublist("Time Step Control").set("Initial Time Step", dt);
224  integrator = Tempus::integratorBasic<double>(pl, model);
225 
226  // Integrate to timeMax
227  bool integratorStatus = integrator->advanceTime();
228  TEST_ASSERT(integratorStatus)
229 
230  // Test if at 'Final Time'
231  time = integrator->getTime();
232  double timeFinal =pl->sublist("Default Integrator")
233  .sublist("Time Step Control").get<double>("Final Time");
234  double tol = 100.0 * std::numeric_limits<double>::epsilon();
235  TEST_FLOATING_EQUALITY(time, timeFinal, tol);
236 
237  // Store off the final solution and step size
238  StepSize.push_back(dt);
239  auto solution = Thyra::createMember(model->get_x_space());
240  Thyra::copy(*(integrator->getX()),solution.ptr());
241  solutions.push_back(solution);
242  auto solutionDot = Thyra::createMember(model->get_x_space());
243  Thyra::copy(*(integrator->getXdot()),solutionDot.ptr());
244  solutionsDot.push_back(solutionDot);
245 
246  // Output finest temporal solution for plotting
247  // This only works for ONE MPI process
248  if ((n == 0) or (n == nTimeStepSizes-1)) {
249  std::string fname = "Tempus_"+stepperName+"_VanDerPol-Ref.dat";
250  if (n == 0) fname = "Tempus_"+stepperName+"_VanDerPol.dat";
251  RCP<const SolutionHistory<double> > solutionHistory =
252  integrator->getSolutionHistory();
253  writeSolution(fname, solutionHistory);
254  }
255  }
256 
257  // Check the order and intercept
258  double xSlope = 0.0;
259  double xDotSlope = 0.0;
260  RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
261  //double order = stepper->getOrder();
262  writeOrderError("Tempus_"+stepperName+"_VanDerPol-Error.dat",
263  stepper, StepSize,
264  solutions, xErrorNorm, xSlope,
265  solutionsDot, xDotErrorNorm, xDotSlope);
266 
267  TEST_FLOATING_EQUALITY( xSlope, stepperOrders[m], 0.02 );
268  TEST_FLOATING_EQUALITY( xErrorNorm[0], stepperErrors[m], 1.0e-4 );
269  // xDot not yet available for IMEX_RK_Partitioned.
270  //TEST_FLOATING_EQUALITY( xDotSlope, 1.74898, 0.02 );
271  //TEST_FLOATING_EQUALITY( xDotErrorNorm[0], 1.0038, 1.0e-4 );
272 
273  }
274  Teuchos::TimeMonitor::summarize();
275 }
276 
277 
278 } // namespace Tempus_Test
Teuchos::RCP< SolutionState< Scalar > > createSolutionStateX(const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdot=Teuchos::null, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdotdot=Teuchos::null)
Nonmember constructor from non-const solution vectors, x.
van der Pol model formulated for the partitioned IMEX-RK.
void writeSolution(const std::string filename, Teuchos::RCP< const Tempus::SolutionHistory< Scalar > > solutionHistory)
Partitioned Implicit-Explicit Runge-Kutta (IMEX-RK) time stepper.
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar > > stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope)
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
ModelEvaluator pair for implicit and explicit (IMEX) evaulations.
TimeStepControl manages the time step size. There several mechanicisms that effect the time step size...
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
Keep a fix number of states.
Solution state for integrators and steppers. SolutionState contains the metadata for solutions and th...