9 #include "Teuchos_UnitTestHarness.hpp"
10 #include "Teuchos_XMLParameterListHelpers.hpp"
11 #include "Teuchos_TimeMonitor.hpp"
13 #include "Thyra_VectorStdOps.hpp"
15 #include "Tempus_IntegratorBasic.hpp"
16 #include "Tempus_WrapperModelEvaluatorPairPartIMEX_Basic.hpp"
17 #include "Tempus_StepperIMEX_RK_Partition.hpp"
20 #include "../TestModels/VanDerPol_IMEX_ExplicitModel.hpp"
21 #include "../TestModels/VanDerPol_IMEXPart_ImplicitModel.hpp"
22 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
27 namespace Tempus_Test {
31 using Teuchos::rcp_const_cast;
32 using Teuchos::ParameterList;
33 using Teuchos::sublist;
34 using Teuchos::getParametersFromXmlFile;
48 RCP<ParameterList> pList =
49 getParametersFromXmlFile(
"Tempus_IMEX_RK_VanDerPol.xml");
50 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
53 RCP<ParameterList> vdpmPL = sublist(pList,
"VanDerPolModel",
true);
54 const bool useProductVector =
true;
61 const int numExplicitBlocks = 1;
62 const int parameterIndex = 4;
64 explicitModel, implicitModel,
65 numExplicitBlocks, parameterIndex));
70 stepper->setModel(model);
71 stepper->initialize();
75 ParameterList tscPL = pl->sublist(
"Default Integrator")
76 .sublist(
"Time Step Control");
77 timeStepControl->setStepType (tscPL.get<std::string>(
"Integrator Step Type"));
78 timeStepControl->setInitIndex(tscPL.get<
int> (
"Initial Time Index"));
79 timeStepControl->setInitTime (tscPL.get<
double>(
"Initial Time"));
80 timeStepControl->setFinalTime(tscPL.get<
double>(
"Final Time"));
81 timeStepControl->setInitTimeStep(dt);
82 timeStepControl->initialize();
85 Thyra::ModelEvaluatorBase::InArgs<double> inArgsIC =
86 stepper->getModel()->getNominalValues();
87 auto icSolution = rcp_const_cast<Thyra::VectorBase<double> > (inArgsIC.get_x());
89 icState->setTime (timeStepControl->getInitTime());
90 icState->setIndex (timeStepControl->getInitIndex());
91 icState->setTimeStep(0.0);
92 icState->setOrder (stepper->getOrder());
97 solutionHistory->setName(
"Forward States");
99 solutionHistory->setStorageLimit(2);
100 solutionHistory->addState(icState);
103 RCP<Tempus::IntegratorBasic<double> > integrator =
104 Tempus::integratorBasic<double>();
105 integrator->setStepperWStepper(stepper);
106 integrator->setTimeStepControl(timeStepControl);
107 integrator->setSolutionHistory(solutionHistory);
109 integrator->initialize();
113 bool integratorStatus = integrator->advanceTime();
114 TEST_ASSERT(integratorStatus)
118 double time = integrator->getTime();
119 double timeFinal =pl->sublist(
"Default Integrator")
120 .sublist(
"Time Step Control").get<
double>(
"Final Time");
121 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
124 RCP<Thyra::VectorBase<double> > x = integrator->getX();
127 std::cout <<
" Stepper = " << stepper->description() << std::endl;
128 std::cout <<
" =========================" << std::endl;
129 std::cout <<
" Computed solution: " << get_ele(*(x ), 0) <<
" "
130 << get_ele(*(x ), 1) << std::endl;
131 std::cout <<
" =========================" << std::endl;
132 TEST_FLOATING_EQUALITY(get_ele(*(x), 0), 1.810210, 1.0e-4 );
133 TEST_FLOATING_EQUALITY(get_ele(*(x), 1), -0.754602, 1.0e-4 );
141 std::vector<std::string> stepperTypes;
142 stepperTypes.push_back(
"Partitioned IMEX RK 1st order");
143 stepperTypes.push_back(
"Partitioned IMEX RK SSP2" );
144 stepperTypes.push_back(
"Partitioned IMEX RK ARS 233" );
145 stepperTypes.push_back(
"General Partitioned IMEX RK" );
147 std::vector<double> stepperOrders;
148 stepperOrders.push_back(1.07964);
149 stepperOrders.push_back(2.00408);
150 stepperOrders.push_back(2.70655);
151 stepperOrders.push_back(2.00211);
153 std::vector<double> stepperErrors;
154 stepperErrors.push_back(0.0046423);
155 stepperErrors.push_back(0.0154534);
156 stepperErrors.push_back(0.000298908);
157 stepperErrors.push_back(0.0071546);
159 std::vector<double> stepperInitDt;
160 stepperInitDt.push_back(0.0125);
161 stepperInitDt.push_back(0.05);
162 stepperInitDt.push_back(0.05);
163 stepperInitDt.push_back(0.05);
165 std::vector<std::string>::size_type m;
166 for(m = 0; m != stepperTypes.size(); m++) {
168 std::string stepperType = stepperTypes[m];
169 std::string stepperName = stepperTypes[m];
170 std::replace(stepperName.begin(), stepperName.end(),
' ',
'_');
171 std::replace(stepperName.begin(), stepperName.end(),
'/',
'.');
173 RCP<Tempus::IntegratorBasic<double> > integrator;
174 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
175 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
176 std::vector<double> StepSize;
177 std::vector<double> xErrorNorm;
178 std::vector<double> xDotErrorNorm;
180 const int nTimeStepSizes = 3;
181 double dt = stepperInitDt[m];
183 for (
int n=0; n<nTimeStepSizes; n++) {
186 RCP<ParameterList> pList =
187 getParametersFromXmlFile(
"Tempus_IMEX_RK_VanDerPol.xml");
190 RCP<ParameterList> vdpmPL = sublist(pList,
"VanDerPolModel",
true);
191 const bool useProductVector =
true;
200 const int numExplicitBlocks = 1;
201 const int parameterIndex = 4;
204 explicitModel, implicitModel,
205 numExplicitBlocks, parameterIndex));
208 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
210 if (stepperType ==
"General Partitioned IMEX RK"){
212 pl->sublist(
"Default Integrator").set(
"Stepper Name",
"General IMEX RK");
214 pl->sublist(
"Default Stepper").set(
"Stepper Type", stepperType);
218 if (n == nTimeStepSizes-1) dt /= 10.0;
222 pl->sublist(
"Default Integrator")
223 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
224 integrator = Tempus::integratorBasic<double>(pl, model);
227 bool integratorStatus = integrator->advanceTime();
228 TEST_ASSERT(integratorStatus)
231 time = integrator->getTime();
232 double timeFinal =pl->sublist(
"Default Integrator")
233 .sublist(
"Time Step Control").get<
double>(
"Final Time");
234 double tol = 100.0 * std::numeric_limits<double>::epsilon();
235 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
238 StepSize.push_back(dt);
239 auto solution = Thyra::createMember(model->get_x_space());
240 Thyra::copy(*(integrator->getX()),solution.ptr());
241 solutions.push_back(solution);
242 auto solutionDot = Thyra::createMember(model->get_x_space());
243 Thyra::copy(*(integrator->getXdot()),solutionDot.ptr());
244 solutionsDot.push_back(solutionDot);
248 if ((n == 0) or (n == nTimeStepSizes-1)) {
249 std::string fname =
"Tempus_"+stepperName+
"_VanDerPol-Ref.dat";
250 if (n == 0) fname =
"Tempus_"+stepperName+
"_VanDerPol.dat";
251 RCP<const SolutionHistory<double> > solutionHistory =
252 integrator->getSolutionHistory();
259 double xDotSlope = 0.0;
260 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
264 solutions, xErrorNorm, xSlope,
265 solutionsDot, xDotErrorNorm, xDotSlope);
267 TEST_FLOATING_EQUALITY( xSlope, stepperOrders[m], 0.02 );
268 TEST_FLOATING_EQUALITY( xErrorNorm[0], stepperErrors[m], 1.0e-4 );
274 Teuchos::TimeMonitor::summarize();
Teuchos::RCP< SolutionState< Scalar > > createSolutionStateX(const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdot=Teuchos::null, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdotdot=Teuchos::null)
Nonmember constructor from non-const solution vectors, x.
van der Pol model formulated for the partitioned IMEX-RK.
void writeSolution(const std::string filename, Teuchos::RCP< const Tempus::SolutionHistory< Scalar > > solutionHistory)
Partitioned Implicit-Explicit Runge-Kutta (IMEX-RK) time stepper.
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar > > stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope)
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
ModelEvaluator pair for implicit and explicit (IMEX) evaulations.
TimeStepControl manages the time step size. There several mechanicisms that effect the time step size...
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
Keep a fix number of states.
van der Pol model formulated for IMEX.
Solution state for integrators and steppers. SolutionState contains the metadata for solutions and th...