9 #include "Teuchos_UnitTestHarness.hpp"
10 #include "Teuchos_XMLParameterListHelpers.hpp"
11 #include "Teuchos_TimeMonitor.hpp"
13 #include "Thyra_VectorStdOps.hpp"
15 #include "Tempus_IntegratorBasic.hpp"
18 #include "../TestModels/SinCosModel.hpp"
19 #include "../TestModels/VanDerPolModel.hpp"
20 #include "../TestUtils/Tempus_ConvergenceTestUtils.hpp"
25 namespace Tempus_Test {
29 using Teuchos::rcp_const_cast;
30 using Teuchos::rcp_dynamic_cast;
31 using Teuchos::ParameterList;
32 using Teuchos::parameterList;
33 using Teuchos::sublist;
34 using Teuchos::getParametersFromXmlFile;
45 std::vector<std::string> RKMethods;
46 RKMethods.push_back(
"General DIRK");
47 RKMethods.push_back(
"RK Backward Euler");
48 RKMethods.push_back(
"DIRK 1 Stage Theta Method");
49 RKMethods.push_back(
"RK Implicit 1 Stage 1st order Radau IA");
50 RKMethods.push_back(
"RK Implicit Midpoint");
51 RKMethods.push_back(
"SDIRK 2 Stage 2nd order");
52 RKMethods.push_back(
"RK Implicit 2 Stage 2nd order Lobatto IIIB");
53 RKMethods.push_back(
"SDIRK 2 Stage 3rd order");
54 RKMethods.push_back(
"EDIRK 2 Stage 3rd order");
55 RKMethods.push_back(
"EDIRK 2 Stage Theta Method");
56 RKMethods.push_back(
"SDIRK 3 Stage 4th order");
57 RKMethods.push_back(
"SDIRK 5 Stage 4th order");
58 RKMethods.push_back(
"SDIRK 5 Stage 5th order");
59 RKMethods.push_back(
"SDIRK 2(1) Pair");
60 RKMethods.push_back(
"RK Trapezoidal Rule");
61 RKMethods.push_back(
"RK Crank-Nicolson");
63 for(std::vector<std::string>::size_type m = 0; m != RKMethods.size(); m++) {
65 std::string RKMethod = RKMethods[m];
68 RCP<ParameterList> pList =
69 getParametersFromXmlFile(
"Tempus_DIRK_SinCos.xml");
72 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
75 RCP<ParameterList> tempusPL = sublist(pList,
"Tempus",
true);
76 tempusPL->sublist(
"Default Stepper").set(
"Stepper Type", RKMethods[m]);
78 if (RKMethods[m] ==
"DIRK 1 Stage Theta Method" ||
79 RKMethods[m] ==
"EDIRK 2 Stage Theta Method") {
81 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
82 RCP<ParameterList> solverPL = parameterList();
83 *solverPL = *(sublist(stepperPL,
"Default Solver",
true));
84 tempusPL->sublist(
"Default Stepper").remove(
"Zero Initial Guess");
85 tempusPL->sublist(
"Default Stepper").remove(
"Default Solver");
86 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Zero Initial Guess", 0);
87 tempusPL->sublist(
"Default Stepper").remove(
"Reset Initial Guess");
88 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Reset Initial Guess", 1);
89 tempusPL->sublist(
"Default Stepper").set(
"Default Solver", *solverPL);
90 tempusPL->sublist(
"Default Stepper").set<
double>(
"theta", 0.5);
91 }
else if (RKMethods[m] ==
"SDIRK 2 Stage 2nd order") {
93 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
94 RCP<ParameterList> solverPL = parameterList();
95 *solverPL = *(sublist(stepperPL,
"Default Solver",
true));
96 tempusPL->sublist(
"Default Stepper").remove(
"Default Solver");
97 tempusPL->sublist(
"Default Stepper").remove(
"Zero Initial Guess");
98 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Zero Initial Guess", 0);
99 tempusPL->sublist(
"Default Stepper").remove(
"Reset Initial Guess");
100 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Reset Initial Guess", 1);
101 tempusPL->sublist(
"Default Stepper").set(
"Default Solver", *solverPL);
102 tempusPL->sublist(
"Default Stepper")
103 .set<
double>(
"gamma", 0.2928932188134524);
104 }
else if (RKMethods[m] ==
"SDIRK 2 Stage 3rd order") {
106 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
107 RCP<ParameterList> solverPL = parameterList();
108 *solverPL = *(sublist(stepperPL,
"Default Solver",
true));
109 tempusPL->sublist(
"Default Stepper").remove(
"Zero Initial Guess");
110 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Zero Initial Guess", 0);
111 tempusPL->sublist(
"Default Stepper").remove(
"Default Solver");
112 tempusPL->sublist(
"Default Stepper").remove(
"Reset Initial Guess");
113 tempusPL->sublist(
"Default Stepper").set<
bool>(
"Reset Initial Guess", 1);
114 tempusPL->sublist(
"Default Stepper").set(
"Default Solver", *solverPL);
115 tempusPL->sublist(
"Default Stepper")
116 .set<std::string>(
"Gamma Type",
"3rd Order A-stable");
117 tempusPL->sublist(
"Default Stepper")
118 .set<
double>(
"gamma", 0.7886751345948128);
119 }
else if (RKMethods[m] ==
"RK Crank-Nicolson") {
121 tempusPL->sublist(
"Default Stepper")
122 .set(
"Stepper Type",
"RK Trapezoidal Rule");
123 }
else if (RKMethods[m] ==
"General DIRK") {
125 Teuchos::RCP<Teuchos::ParameterList> tableauPL = Teuchos::parameterList();
126 tableauPL->set<std::string>(
"A",
"0.2928932188134524 0.0; 0.7071067811865476 0.2928932188134524");
127 tableauPL->set<std::string>(
"b",
"0.7071067811865476 0.2928932188134524");
128 tableauPL->set<std::string>(
"c",
"0.2928932188134524 1.0");
129 tableauPL->set<
int>(
"order", 2);
130 tableauPL->set<std::string>(
"bstar",
"");
131 tempusPL->sublist(
"Default Stepper").set(
"Tableau", *tableauPL);
137 RCP<Tempus::IntegratorBasic<double> > integrator =
138 Tempus::integratorBasic<double>(tempusPL, model);
140 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
141 RCP<ParameterList> defaultPL =
142 Teuchos::rcp_const_cast<Teuchos::ParameterList>(
143 integrator->getStepper()->getValidParameters());
144 defaultPL->remove(
"Description");
146 bool pass = haveSameValues(*stepperPL, *defaultPL,
true);
148 std::cout << std::endl;
149 std::cout <<
"stepperPL -------------- \n" << *stepperPL << std::endl;
150 std::cout <<
"defaultPL -------------- \n" << *defaultPL << std::endl;
157 RCP<Tempus::IntegratorBasic<double> > integrator =
158 Tempus::integratorBasic<double>(model, RKMethods[m]);
160 RCP<ParameterList> stepperPL = sublist(tempusPL,
"Default Stepper",
true);
161 RCP<ParameterList> defaultPL =
162 Teuchos::rcp_const_cast<Teuchos::ParameterList>(
163 integrator->getStepper()->getValidParameters());
164 defaultPL->remove(
"Description");
166 bool pass = haveSameValues(*stepperPL, *defaultPL,
true);
168 std::cout << std::endl;
169 std::cout <<
"stepperPL -------------- \n" << *stepperPL << std::endl;
170 std::cout <<
"defaultPL -------------- \n" << *defaultPL << std::endl;
185 RCP<ParameterList> pList =
186 getParametersFromXmlFile(
"Tempus_DIRK_SinCos.xml");
187 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
190 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
195 RCP<Tempus::StepperFactory<double> > sf =
197 RCP<Tempus::Stepper<double> > stepper =
198 sf->createStepper(
"SDIRK 2 Stage 2nd order");
199 stepper->setModel(model);
200 stepper->initialize();
204 ParameterList tscPL = pl->sublist(
"Default Integrator")
205 .sublist(
"Time Step Control");
206 timeStepControl->setStepType (tscPL.get<std::string>(
"Integrator Step Type"));
207 timeStepControl->setInitIndex(tscPL.get<
int> (
"Initial Time Index"));
208 timeStepControl->setInitTime (tscPL.get<
double>(
"Initial Time"));
209 timeStepControl->setFinalTime(tscPL.get<
double>(
"Final Time"));
210 timeStepControl->setInitTimeStep(dt);
211 timeStepControl->initialize();
214 Thyra::ModelEvaluatorBase::InArgs<double> inArgsIC =
215 stepper->getModel()->getNominalValues();
216 auto icSolution = rcp_const_cast<Thyra::VectorBase<double> > (inArgsIC.get_x());
218 icState->setTime (timeStepControl->getInitTime());
219 icState->setIndex (timeStepControl->getInitIndex());
220 icState->setTimeStep(0.0);
221 icState->setOrder (stepper->getOrder());
226 solutionHistory->setName(
"Forward States");
228 solutionHistory->setStorageLimit(2);
229 solutionHistory->addState(icState);
232 RCP<Tempus::IntegratorBasic<double> > integrator =
233 Tempus::integratorBasic<double>();
234 integrator->setStepperWStepper(stepper);
235 integrator->setTimeStepControl(timeStepControl);
236 integrator->setSolutionHistory(solutionHistory);
238 integrator->initialize();
242 bool integratorStatus = integrator->advanceTime();
243 TEST_ASSERT(integratorStatus)
247 double time = integrator->getTime();
248 double timeFinal =pl->sublist(
"Default Integrator")
249 .sublist(
"Time Step Control").get<
double>(
"Final Time");
250 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
253 RCP<Thyra::VectorBase<double> > x = integrator->getX();
254 RCP<const Thyra::VectorBase<double> > x_exact =
255 model->getExactSolution(time).get_x();
258 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
259 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *x_exact, -1.0, *(x));
262 std::cout <<
" Stepper = SDIRK 2 Stage 2nd order" << std::endl;
263 std::cout <<
" =========================" << std::endl;
264 std::cout <<
" Exact solution : " << get_ele(*(x_exact), 0) <<
" "
265 << get_ele(*(x_exact), 1) << std::endl;
266 std::cout <<
" Computed solution: " << get_ele(*(x ), 0) <<
" "
267 << get_ele(*(x ), 1) << std::endl;
268 std::cout <<
" Difference : " << get_ele(*(xdiff ), 0) <<
" "
269 << get_ele(*(xdiff ), 1) << std::endl;
270 std::cout <<
" =========================" << std::endl;
271 TEST_FLOATING_EQUALITY(get_ele(*(x), 0), 0.841470, 1.0e-4 );
272 TEST_FLOATING_EQUALITY(get_ele(*(x), 1), 0.540304, 1.0e-4 );
280 std::vector<std::string> RKMethods;
281 RKMethods.push_back(
"General DIRK");
282 RKMethods.push_back(
"RK Backward Euler");
283 RKMethods.push_back(
"DIRK 1 Stage Theta Method");
284 RKMethods.push_back(
"RK Implicit 1 Stage 1st order Radau IA");
285 RKMethods.push_back(
"RK Implicit Midpoint");
286 RKMethods.push_back(
"SDIRK 2 Stage 2nd order");
287 RKMethods.push_back(
"RK Implicit 2 Stage 2nd order Lobatto IIIB");
288 RKMethods.push_back(
"SDIRK 2 Stage 3rd order");
289 RKMethods.push_back(
"EDIRK 2 Stage 3rd order");
290 RKMethods.push_back(
"EDIRK 2 Stage Theta Method");
291 RKMethods.push_back(
"SDIRK 3 Stage 4th order");
292 RKMethods.push_back(
"SDIRK 5 Stage 4th order");
293 RKMethods.push_back(
"SDIRK 5 Stage 5th order");
294 RKMethods.push_back(
"SDIRK 2(1) Pair");
295 RKMethods.push_back(
"RK Trapezoidal Rule");
296 RKMethods.push_back(
"RK Crank-Nicolson");
297 RKMethods.push_back(
"SSPDIRK22");
298 RKMethods.push_back(
"SSPDIRK32");
299 RKMethods.push_back(
"SSPDIRK23");
300 RKMethods.push_back(
"SSPDIRK33");
301 RKMethods.push_back(
"SDIRK 3 Stage 2nd order");
303 std::vector<double> RKMethodErrors;
304 RKMethodErrors.push_back(2.52738e-05);
305 RKMethodErrors.push_back(0.0124201);
306 RKMethodErrors.push_back(5.20785e-05);
307 RKMethodErrors.push_back(0.0124201);
308 RKMethodErrors.push_back(5.20785e-05);
309 RKMethodErrors.push_back(2.52738e-05);
310 RKMethodErrors.push_back(5.20785e-05);
311 RKMethodErrors.push_back(1.40223e-06);
312 RKMethodErrors.push_back(2.17004e-07);
313 RKMethodErrors.push_back(5.20785e-05);
314 RKMethodErrors.push_back(6.41463e-08);
315 RKMethodErrors.push_back(3.30631e-10);
316 RKMethodErrors.push_back(1.35728e-11);
317 RKMethodErrors.push_back(0.0001041);
318 RKMethodErrors.push_back(5.20785e-05);
319 RKMethodErrors.push_back(5.20785e-05);
320 RKMethodErrors.push_back(1.30205e-05);
321 RKMethodErrors.push_back(5.7869767e-06);
322 RKMethodErrors.push_back(1.00713e-07);
323 RKMethodErrors.push_back(3.94916e-08);
324 RKMethodErrors.push_back(2.52738e-05);
326 TEUCHOS_ASSERT( RKMethods.size() == RKMethodErrors.size() );
328 for(std::vector<std::string>::size_type m = 0; m != RKMethods.size(); m++) {
330 std::string RKMethod = RKMethods[m];
331 std::replace(RKMethod.begin(), RKMethod.end(),
' ',
'_');
332 std::replace(RKMethod.begin(), RKMethod.end(),
'/',
'.');
334 RCP<Tempus::IntegratorBasic<double> > integrator;
335 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
336 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
337 std::vector<double> StepSize;
338 std::vector<double> xErrorNorm;
339 std::vector<double> xDotErrorNorm;
341 const int nTimeStepSizes = 2;
344 for (
int n=0; n<nTimeStepSizes; n++) {
347 RCP<ParameterList> pList =
348 getParametersFromXmlFile(
"Tempus_DIRK_SinCos.xml");
351 RCP<ParameterList> scm_pl = sublist(pList,
"SinCosModel",
true);
355 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
356 pl->sublist(
"Default Stepper").set(
"Stepper Type", RKMethods[m]);
357 if (RKMethods[m] ==
"DIRK 1 Stage Theta Method" ||
358 RKMethods[m] ==
"EDIRK 2 Stage Theta Method") {
359 pl->sublist(
"Default Stepper").set<
double>(
"theta", 0.5);
360 }
else if (RKMethods[m] ==
"SDIRK 2 Stage 2nd order") {
361 pl->sublist(
"Default Stepper").set(
"gamma", 0.2928932188134524);
362 }
else if (RKMethods[m] ==
"SDIRK 2 Stage 3rd order") {
363 pl->sublist(
"Default Stepper")
364 .set<std::string>(
"Gamma Type",
"3rd Order A-stable");
370 pl->sublist(
"Default Integrator")
371 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
372 integrator = Tempus::integratorBasic<double>(pl, model);
378 RCP<Thyra::VectorBase<double> > x0 =
379 model->getNominalValues().get_x()->clone_v();
380 integrator->initializeSolutionHistory(0.0, x0);
383 bool integratorStatus = integrator->advanceTime();
384 TEST_ASSERT(integratorStatus)
387 time = integrator->getTime();
388 double timeFinal = pl->sublist(
"Default Integrator")
389 .sublist(
"Time Step Control").get<
double>(
"Final Time");
390 double tol = 100.0 * std::numeric_limits<double>::epsilon();
391 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
395 RCP<const SolutionHistory<double> > solutionHistory =
396 integrator->getSolutionHistory();
397 writeSolution(
"Tempus_"+RKMethod+
"_SinCos.dat", solutionHistory);
400 for (
int i=0; i<solutionHistory->getNumStates(); i++) {
401 double time_i = (*solutionHistory)[i]->getTime();
403 rcp_const_cast<Thyra::VectorBase<double> > (
404 model->getExactSolution(time_i).get_x()),
405 rcp_const_cast<Thyra::VectorBase<double> > (
406 model->getExactSolution(time_i).get_x_dot()));
407 state->setTime((*solutionHistory)[i]->getTime());
408 solnHistExact->addState(state);
410 writeSolution(
"Tempus_"+RKMethod+
"_SinCos-Ref.dat", solnHistExact);
414 StepSize.push_back(dt);
415 auto solution = Thyra::createMember(model->get_x_space());
416 Thyra::copy(*(integrator->getX()),solution.ptr());
417 solutions.push_back(solution);
418 auto solutionDot = Thyra::createMember(model->get_x_space());
419 Thyra::copy(*(integrator->getXdot()),solutionDot.ptr());
420 solutionsDot.push_back(solutionDot);
421 if (n == nTimeStepSizes-1) {
422 StepSize.push_back(0.0);
423 auto solutionExact = Thyra::createMember(model->get_x_space());
424 Thyra::copy(*(model->getExactSolution(time).get_x()),solutionExact.ptr());
425 solutions.push_back(solutionExact);
426 auto solutionDotExact = Thyra::createMember(model->get_x_space());
427 Thyra::copy(*(model->getExactSolution(time).get_x_dot()),
428 solutionDotExact.ptr());
429 solutionsDot.push_back(solutionDotExact);
435 double xDotSlope = 0.0;
436 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
437 double order = stepper->getOrder();
440 solutions, xErrorNorm, xSlope,
441 solutionsDot, xDotErrorNorm, xDotSlope);
443 TEST_FLOATING_EQUALITY( xSlope, order, 0.01 );
444 TEST_FLOATING_EQUALITY( xErrorNorm[0], RKMethodErrors[m], 5.0e-4 );
457 std::vector<std::string> RKMethods;
458 RKMethods.push_back(
"SDIRK 2 Stage 2nd order");
460 std::string RKMethod = RKMethods[0];
461 std::replace(RKMethod.begin(), RKMethod.end(),
' ',
'_');
462 std::replace(RKMethod.begin(), RKMethod.end(),
'/',
'.');
464 RCP<Tempus::IntegratorBasic<double> > integrator;
465 std::vector<RCP<Thyra::VectorBase<double>>> solutions;
466 std::vector<RCP<Thyra::VectorBase<double>>> solutionsDot;
467 std::vector<double> StepSize;
468 std::vector<double> xErrorNorm;
469 std::vector<double> xDotErrorNorm;
471 const int nTimeStepSizes = 3;
474 for (
int n=0; n<nTimeStepSizes; n++) {
477 RCP<ParameterList> pList =
478 getParametersFromXmlFile(
"Tempus_DIRK_VanDerPol.xml");
481 RCP<ParameterList> vdpm_pl = sublist(pList,
"VanDerPolModel",
true);
485 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
486 pl->sublist(
"Default Stepper").set(
"Stepper Type", RKMethods[0]);
487 pl->sublist(
"Default Stepper").set(
"gamma", 0.2928932188134524);
491 if (n == nTimeStepSizes-1) dt /= 10.0;
494 pl->sublist(
"Default Integrator")
495 .sublist(
"Time Step Control").set(
"Initial Time Step", dt);
496 integrator = Tempus::integratorBasic<double>(pl, model);
499 bool integratorStatus = integrator->advanceTime();
500 TEST_ASSERT(integratorStatus)
503 time = integrator->getTime();
504 double timeFinal =pl->sublist(
"Default Integrator")
505 .sublist(
"Time Step Control").get<
double>(
"Final Time");
506 double tol = 100.0 * std::numeric_limits<double>::epsilon();
507 TEST_FLOATING_EQUALITY(time, timeFinal, tol);
510 StepSize.push_back(dt);
511 auto solution = Thyra::createMember(model->get_x_space());
512 Thyra::copy(*(integrator->getX()),solution.ptr());
513 solutions.push_back(solution);
514 auto solutionDot = Thyra::createMember(model->get_x_space());
515 Thyra::copy(*(integrator->getXdot()),solutionDot.ptr());
516 solutionsDot.push_back(solutionDot);
520 if ((n == 0) or (n == nTimeStepSizes-1)) {
521 std::string fname =
"Tempus_"+RKMethod+
"_VanDerPol-Ref.dat";
522 if (n == 0) fname =
"Tempus_"+RKMethod+
"_VanDerPol.dat";
523 RCP<const SolutionHistory<double> > solutionHistory =
524 integrator->getSolutionHistory();
531 double xDotSlope = 0.0;
532 RCP<Tempus::Stepper<double> > stepper = integrator->getStepper();
533 double order = stepper->getOrder();
536 solutions, xErrorNorm, xSlope,
537 solutionsDot, xDotErrorNorm, xDotSlope);
539 TEST_FLOATING_EQUALITY( xSlope, order, 0.06 );
540 TEST_FLOATING_EQUALITY( xErrorNorm[0], 1.07525e-05, 1.0e-4 );
545 Teuchos::TimeMonitor::summarize();
554 std::vector<std::string> IntegratorList;
555 IntegratorList.push_back(
"Embedded_Integrator_PID");
556 IntegratorList.push_back(
"Embedded_Integrator");
559 const int refIstep = 217;
561 for(
auto integratorChoice : IntegratorList){
563 std::cout <<
"Using Integrator: " << integratorChoice <<
" !!!" << std::endl;
566 RCP<ParameterList> pList =
567 getParametersFromXmlFile(
"Tempus_DIRK_VanDerPol.xml");
571 RCP<ParameterList> vdpm_pl = sublist(pList,
"VanDerPolModel",
true);
575 RCP<ParameterList> pl = sublist(pList,
"Tempus",
true);
576 pl->set(
"Integrator Name", integratorChoice);
579 RCP<Tempus::IntegratorBasic<double> > integrator =
580 Tempus::integratorBasic<double>(pl, model);
582 const std::string RKMethod_ =
583 pl->sublist(integratorChoice).get<std::string>(
"Stepper Name");
586 bool integratorStatus = integrator->advanceTime();
587 TEST_ASSERT(integratorStatus);
590 double time = integrator->getTime();
591 double timeFinal = pl->sublist(integratorChoice)
592 .sublist(
"Time Step Control").get<
double>(
"Final Time");
593 TEST_FLOATING_EQUALITY(time, timeFinal, 1.0e-14);
597 RCP<Thyra::VectorBase<double> > x = integrator->getX();
598 RCP<Thyra::VectorBase<double> > xref = x->clone_v();
599 Thyra::set_ele(0, -1.5484458614405929, xref.ptr());
600 Thyra::set_ele(1, 1.0181127316101317, xref.ptr());
603 RCP<Thyra::VectorBase<double> > xdiff = x->clone_v();
604 Thyra::V_StVpStV(xdiff.ptr(), 1.0, *xref, -1.0, *(x));
605 const double L2norm = Thyra::norm_2(*xdiff);
608 if (integratorChoice ==
"Embedded_Integrator_PID"){
609 const double absTol = pl->sublist(integratorChoice).
610 sublist(
"Time Step Control").get<
double>(
"Maximum Absolute Error");
611 const double relTol = pl->sublist(integratorChoice).
612 sublist(
"Time Step Control").get<
double>(
"Maximum Relative Error");
618 const int iStep = integrator->getSolutionHistory()->
619 getCurrentState()->getIndex();
624 TEST_FLOATING_EQUALITY(std::log10(L2norm),std::log10(absTol), 0.3 );
625 TEST_FLOATING_EQUALITY(std::log10(L2norm),std::log10(relTol), 0.3 );
627 TEST_COMPARE(iStep, <=, refIstep);
631 std::ofstream ftmp(
"Tempus_"+integratorChoice+RKMethod_+
"_VDP_Example.dat");
632 RCP<const SolutionHistory<double> > solutionHistory =
633 integrator->getSolutionHistory();
634 int nStates = solutionHistory->getNumStates();
636 for (
int i=0; i<nStates; i++) {
637 RCP<const SolutionState<double> > solutionState = (*solutionHistory)[i];
638 double time_i = solutionState->getTime();
639 RCP<const Thyra::VectorBase<double> > x_plot = solutionState->getX();
641 ftmp << time_i <<
" "
642 << Thyra::get_ele(*(x_plot), 0) <<
" "
643 << Thyra::get_ele(*(x_plot), 1) <<
" " << std::endl;
648 Teuchos::TimeMonitor::summarize();
Teuchos::RCP< SolutionState< Scalar > > createSolutionStateX(const Teuchos::RCP< Thyra::VectorBase< Scalar > > &x, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdot=Teuchos::null, const Teuchos::RCP< Thyra::VectorBase< Scalar > > &xdotdot=Teuchos::null)
Nonmember constructor from non-const solution vectors, x.
Sine-Cosine model problem from Rythmos. This is a canonical Sine-Cosine differential equation with a...
void writeSolution(const std::string filename, Teuchos::RCP< const Tempus::SolutionHistory< Scalar > > solutionHistory)
void writeOrderError(const std::string filename, Teuchos::RCP< Tempus::Stepper< Scalar > > stepper, std::vector< Scalar > &StepSize, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutions, std::vector< Scalar > &xErrorNorm, Scalar &xSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDot, std::vector< Scalar > &xDotErrorNorm, Scalar &xDotSlope, std::vector< Teuchos::RCP< Thyra::VectorBase< Scalar >>> &solutionsDotDot, std::vector< Scalar > &xDotDotErrorNorm, Scalar &xDotDotSlope)
TEUCHOS_UNIT_TEST(BackwardEuler, SinCos_ASA)
TimeStepControl manages the time step size. There several mechanicisms that effect the time step size...
SolutionHistory is basically a container of SolutionStates. SolutionHistory maintains a collection of...
Keep a fix number of states.
van der Pol model problem for nonlinear electrical circuit.
Solution state for integrators and steppers. SolutionState contains the metadata for solutions and th...