9 #include "ROL_StdTeuchosBatchManager.hpp" 
   15 #include "ROL_ParameterList.hpp" 
   18 #include "Teuchos_Time.hpp" 
   20 #include "Teuchos_GlobalMPISession.hpp" 
   21 #include "Teuchos_Comm.hpp" 
   22 #include "Teuchos_DefaultComm.hpp" 
   23 #include "Teuchos_CommHelpers.hpp" 
   25 int main( 
int argc, 
char *argv[] ) {  
 
   27   Teuchos::GlobalMPISession mpiSession(&argc, &argv);
 
   29   auto comm = ROL::toPtr( Teuchos::DefaultComm<int>::getComm() );
 
   32   int iprint     = argc - 1;
 
   33   ROL::Ptr<std::ostream> outStream;
 
   36     outStream = ROL::makePtrFromRef(std::cout);
 
   38     outStream = ROL::makePtrFromRef(bhs);
 
   50     std::string filename = 
"example_02.xml";
 
   51     auto parlist = ROL::getParametersFromXmlFile( filename );
 
   53     if ( parlist->get(
"Display Option",0) && (comm->getRank() > 0) ) {
 
   54       parlist->set(
"Display Option",0);
 
   57     filename = 
"input.xml";
 
   58     auto ROL_parlist = ROL::getParametersFromXmlFile( filename );
 
   64     bool useSA = parlist->get(
"Use Stochastic Approximation",
false);
 
   67       nSamp  = parlist->get(
"Number of Monte Carlo Samples",1000);
 
   69     std::vector<double> tmp(2); tmp[0] = -1.0; tmp[1] = 1.0;
 
   70     std::vector<std::vector<double> > bounds(dim,tmp);
 
   71     ROL::Ptr<ROL::BatchManager<double> > bman
 
   72       = ROL::makePtr<ROL::StdTeuchosBatchManager<double,int>>(comm);
 
   73     ROL::Ptr<ROL::SampleGenerator<double> > sampler
 
   74       = ROL::makePtr<ROL::MonteCarloGenerator<double>>(nSamp,bounds,bman,useSA);
 
   79     int nx = parlist->get(
"Number of Elements", 128);
 
   80     ROL::Ptr<std::vector<double> > z_ptr = ROL::makePtr<std::vector<double>>(nx+1, 0.0);
 
   81     ROL::Ptr<ROL::Vector<double> > z = ROL::makePtr<ROL::StdVector<double>>(z_ptr);
 
   82     ROL::Ptr<std::vector<double> > u_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
 
   83     ROL::Ptr<ROL::Vector<double> > u = ROL::makePtr<ROL::StdVector<double>>(u_ptr);
 
   85     ROL::Ptr<std::vector<double> > p_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
 
   86     ROL::Ptr<ROL::Vector<double> > p = ROL::makePtr<ROL::StdVector<double>>(p_ptr);
 
   87     ROL::Ptr<std::vector<double> > U_ptr = ROL::makePtr<std::vector<double>>(nx+1, 35.0);
 
   88     ROL::Ptr<ROL::Vector<double> > U = ROL::makePtr<ROL::StdVector<double>>(U_ptr);
 
   89     ROL::Ptr<std::vector<double> > L_ptr = ROL::makePtr<std::vector<double>>(nx+1, -5.0);
 
   90     ROL::Ptr<ROL::Vector<double> > L = ROL::makePtr<ROL::StdVector<double>>(L_ptr);
 
   96     double alpha = parlist->get(
"Penalty Parameter", 1.e-4);
 
   97     ROL::Ptr<FEM<double> > fem = ROL::makePtr<FEM<double>>(nx);
 
   98     ROL::Ptr<ROL::Objective_SimOpt<double> > pObj
 
   99       = ROL::makePtr<DiffusionObjective<double>>(fem, alpha);
 
  100     ROL::Ptr<ROL::Constraint_SimOpt<double> > pCon
 
  101       = ROL::makePtr<DiffusionConstraint<double>>(fem);
 
  102     ROL::Ptr<ROL::Objective<double> > robj
 
  103       = ROL::makePtr<ROL::Reduced_Objective_SimOpt<double>>(pObj,pCon,u,z,p);
 
  109     if (parlist->get(
"Run Derivative Check",
false)) {
 
  111       ROL::Ptr<std::vector<double> > dz_ptr = ROL::makePtr<std::vector<double>>(nx+1, 0.0);
 
  112       ROL::Ptr<ROL::Vector<double> > dz = ROL::makePtr<ROL::StdVector<double>>(dz_ptr);
 
  113       ROL::Ptr<std::vector<double> > du_ptr = ROL::makePtr<std::vector<double>>(nx-1, 0.0);
 
  114       ROL::Ptr<ROL::Vector<double> > du = ROL::makePtr<ROL::StdVector<double>>(du_ptr);
 
  118       for (
int i=0; i<nx+1; i++) {
 
  119         (*dz_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
 
  120         (*z_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
 
  122       for (
int i=0; i<nx-1; i++) {
 
  123         (*du_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
 
  124         (*u_ptr)[i] = 2.0*(double)rand()/(double)RAND_MAX - 1.0;
 
  127       std::vector<double> param(dim,0.0);
 
  128       robj->setParameter(param);
 
  129       if ( comm->getRank() == 0 ) {
 
  130         std::cout << 
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED OBJECTIVE FUNCTION SIMOPT\n";
 
  132       pObj->checkGradient(x,d,(comm->getRank()==0));
 
  133       pObj->checkHessVec(x,d,(comm->getRank()==0));
 
  134       if ( comm->getRank() == 0 ) {
 
  135         std::cout << 
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED EQUALITY CONSTRAINT SIMOPT\n";
 
  137       pCon->checkApplyJacobian(x,d,*p,(comm->getRank()==0));
 
  138       pCon->checkApplyAdjointJacobian(x,*du,*p,x,(comm->getRank()==0));
 
  139       pCon->checkApplyAdjointHessian(x,*du,d,x,(comm->getRank()==0));
 
  140       if ( comm->getRank() == 0 ) {
 
  141         std::cout << 
"\nRUN DERIVATIVE CHECK FOR PARAMETRIZED OBJECTIVE FUNCTION\n";
 
  143       robj->checkGradient(*z,*dz,(comm->getRank()==0));
 
  144       robj->checkHessVec(*z,*dz,(comm->getRank()==0));
 
  146       if ( comm->getRank() == 0 ) {
 
  147         std::cout << 
"\nRUN DERIVATIVE CHECK FOR RISK-NEUTRAL OBJECTIVE FUNCTION\n";
 
  149       obj.checkGradient(*z,*dz,(comm->getRank()==0));
 
  150       obj.checkHessVec(*z,*dz,(comm->getRank()==0));
 
  156     ROL::Ptr<ROL::Algorithm<double>>  algo; 
 
  157     ROL::Ptr<ROL::Step<double>>       step;
 
  158     ROL::Ptr<ROL::StatusTest<double>> status;
 
  160       ROL_parlist->sublist(
"General").set(
"Recompute Objective Function",
false);
 
  161       ROL_parlist->sublist(
"Step").sublist(
"Line Search").set(
"Initial Step Size",0.1/alpha);
 
  162       ROL_parlist->sublist(
"Step").sublist(
"Line Search").set(
"User Defined Initial Step Size",
true);
 
  163       ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Line-Search Method").set(
"Type",
"Iteration Scaling");
 
  164       ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Descent Method").set(
"Type",
"Steepest Descent");
 
  165       ROL_parlist->sublist(
"Step").sublist(
"Line Search").sublist(
"Curvature Condition").set(
"Type",
"Null Curvature Condition");
 
  166       status = ROL::makePtr<ROL::StatusTest<double>>(*ROL_parlist);
 
  167       step   = ROL::makePtr<ROL::LineSearchStep<double>>(*ROL_parlist);
 
  168       algo   = ROL::makePtr<ROL::Algorithm<double>>(step,status,
false);
 
  171       status = ROL::makePtr<ROL::StatusTest<double>>(*ROL_parlist);
 
  172       step   = ROL::makePtr<ROL::TrustRegionStep<double>>(*ROL_parlist);
 
  173       algo   = ROL::makePtr<ROL::Algorithm<double>>(step,status,
false);
 
  179     Teuchos::Time timer(
"Optimization Time",
true);
 
  181     algo->run(*z,obj,bnd,(comm->getRank()==0));
 
  182     double optTime = timer.stop();
 
  187     int my_number_samples = sampler->numMySamples(), number_samples = 0;
 
  188     Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_samples,&number_samples);
 
  189     int my_number_solves  = ROL::dynamicPtrCast<DiffusionConstraint<double> >(pCon)->getNumSolves(), number_solves = 0;
 
  190     Teuchos::reduceAll<int,int>(*comm,Teuchos::REDUCE_SUM,1,&my_number_solves,&number_solves);
 
  191     if (comm->getRank() == 0) {
 
  192       std::cout << 
"Number of Samples    = " << number_samples << 
"\n";
 
  193       std::cout << 
"Number of Solves     = " << number_solves  << 
"\n";
 
  194       std::cout << 
"Optimization Time    = " << optTime        << 
"\n\n";
 
  197     if ( comm->getRank() == 0 ) {
 
  200         file.open(
"control_SA.txt");
 
  203         file.open(
"control_SAA.txt");
 
  205       std::vector<double> xmesh(fem->nz(),0.0);
 
  206       fem->build_mesh(xmesh);
 
  207       for (
int i = 0; i < fem->nz(); i++ ) {
 
  208         file << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << xmesh[i] << 
"  "   
  209              << std::setprecision(std::numeric_limits<double>::digits10) << std::scientific << (*z_ptr)[i] 
 
  215   catch (std::logic_error& err) {
 
  216     *outStream << err.what() << 
"\n";
 
  221     std::cout << 
"End Result: TEST FAILED\n"; 
 
  223     std::cout << 
"End Result: TEST PASSED\n";
 
Defines the linear algebra or vector space interface for simulation-based optimization. 
 
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
 
Provides the elementwise interface to apply upper and lower bound constraints. 
 
basic_nullstream< char, char_traits< char >> nullstream
 
int main(int argc, char *argv[])