Anasazi  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
BlockDavidson/BlockDavidsonEpetraEx.cpp

This is an example of how to use the Anasazi::BlockDavidsonSolMgr solver manager to solve a standard eigenvalue problem, using Epetra data structures.

// @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#include "Epetra_CrsMatrix.h"
#include "Teuchos_StandardCatchMacros.hpp"
#include "Teuchos_Assert.hpp"
#ifdef HAVE_MPI
#include "Epetra_MpiComm.h"
#include <mpi.h>
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
// Initialize MPI
//
MPI_Init(&argc,&argv);
#endif
bool success = false;
try {
// Create an Epetra communicator
//
#ifdef HAVE_MPI
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
// Create an Anasazi output manager
//
printer.stream(Anasazi::Errors) << Anasazi::Anasazi_Version() << std::endl << std::endl;
// Get the sorting string from the command line
//
std::string which("SM");
cmdp.setOption("sort",&which,"Targetted eigenvalues (SM or LM).");
throw -1;
}
// Dimension of the matrix
//
// Discretization points in any one direction.
//
const int nx = 10;
// Size of matrix nx*nx
//
const int NumGlobalElements = nx*nx;
// Construct a Map that puts approximately the same number of
// equations on each processor.
//
Epetra_Map Map(NumGlobalElements, 0, Comm);
// Get update list and number of local equations from newly created Map.
//
int NumMyElements = Map.NumMyElements();
std::vector<int> MyGlobalElements(NumMyElements);
Map.MyGlobalElements(&MyGlobalElements[0]);
// Create an integer vector NumNz that is used to build the Petra Matrix.
// NumNz[i] is the Number of OFF-DIAGONAL term for the ith global equation
// on this processor
//
std::vector<int> NumNz(NumMyElements);
/* We are building a matrix of block structure:
| T -I |
|-I T -I |
| -I T |
| ... -I|
| -I T|
where each block is dimension nx by nx and the matrix is on the order of
nx*nx. The block T is a tridiagonal matrix.
*/
for (int i=0; i<NumMyElements; i++) {
if (MyGlobalElements[i] == 0 || MyGlobalElements[i] == NumGlobalElements-1 ||
MyGlobalElements[i] == nx-1 || MyGlobalElements[i] == nx*(nx-1) ) {
NumNz[i] = 3;
}
else if (MyGlobalElements[i] < nx || MyGlobalElements[i] > nx*(nx-1) ||
MyGlobalElements[i]%nx == 0 || (MyGlobalElements[i]+1)%nx == 0) {
NumNz[i] = 4;
}
else {
NumNz[i] = 5;
}
}
// Create an Epetra_Matrix
//
Teuchos::RCP<Epetra_CrsMatrix> A = Teuchos::rcp( new Epetra_CrsMatrix(Epetra_DataAccess::Copy, Map, &NumNz[0]) );
// Compute coefficients for discrete convection-diffution operator
//
const double one = 1.0;
std::vector<double> Values(4);
std::vector<int> Indices(4);
double rho = 0.0;
double h = one /(nx+1);
double h2 = h*h;
double c = 5.0e-01*rho/ h;
Values[0] = -one/h2 - c; Values[1] = -one/h2 + c; Values[2] = -one/h2; Values[3]= -one/h2;
double diag = 4.0 / h2;
int NumEntries;
for (int i=0; i<NumMyElements; i++)
{
if (MyGlobalElements[i]==0)
{
Indices[0] = 1;
Indices[1] = nx;
NumEntries = 2;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i] == nx*(nx-1))
{
Indices[0] = nx*(nx-1)+1;
Indices[1] = nx*(nx-2);
NumEntries = 2;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i] == nx-1)
{
Indices[0] = nx-2;
NumEntries = 1;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
assert( info==0 );
Indices[0] = 2*nx-1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i] == NumGlobalElements-1)
{
Indices[0] = NumGlobalElements-2;
NumEntries = 1;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
assert( info==0 );
Indices[0] = nx*(nx-1)-1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i] < nx)
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i] > nx*(nx-1))
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
NumEntries = 3;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if (MyGlobalElements[i]%nx == 0)
{
Indices[0] = MyGlobalElements[i]+1;
Indices[1] = MyGlobalElements[i]-nx;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else if ((MyGlobalElements[i]+1)%nx == 0)
{
Indices[0] = MyGlobalElements[i]-nx;
Indices[1] = MyGlobalElements[i]+nx;
NumEntries = 2;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
assert( info==0 );
Indices[0] = MyGlobalElements[i]-1;
NumEntries = 1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
else
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
Indices[3] = MyGlobalElements[i]+nx;
NumEntries = 4;
int info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
// Put in the diagonal entry
int info = A->InsertGlobalValues(MyGlobalElements[i], 1, &diag, &MyGlobalElements[i]);
TEUCHOS_TEST_FOR_EXCEPTION( info != 0, std::runtime_error, "Failure in InsertGlobalValues()" );
}
// Finish up
int info = A->FillComplete();
TEUCHOS_ASSERT( info==0 );
A->SetTracebackMode(1); // Shutdown Epetra Warning tracebacks
// Create a identity matrix for the temporary mass matrix
Teuchos::RCP<Epetra_CrsMatrix> M = Teuchos::rcp( new Epetra_CrsMatrix(Epetra_DataAccess::Copy, Map, 1) );
for (int i=0; i<NumMyElements; i++)
{
Values[0] = one;
Indices[0] = i;
NumEntries = 1;
info = M->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
// Finish up
info = M->FillComplete();
TEUCHOS_ASSERT( info==0 );
M->SetTracebackMode(1); // Shutdown Epetra Warning tracebacks
//************************************
// Call the Block Davidson solver manager
//***********************************
//
// Variables used for the Block Davidson Method
//
const int nev = 4;
const int blockSize = 5;
const int numBlocks = 8;
const int maxRestarts = 100;
const double tol = 1.0e-8;
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;
// Create an Epetra_MultiVector for an initial vector to start the solver.
// Note: This needs to have the same number of columns as the blocksize.
//
ivec->Random();
// Create the eigenproblem.
//
// Inform the eigenproblem that the operator A is symmetric
//
MyProblem->setHermitian(true);
// Set the number of eigenvalues requested
//
MyProblem->setNEV( nev );
// Inform the eigenproblem that you are finishing passing it information
//
bool boolret = MyProblem->setProblem();
if (boolret != true) {
printer.print(Anasazi::Errors,"Anasazi::BasicEigenproblem::setProblem() returned an error.\n");
throw -1;
}
// Create parameter list to pass into the solver manager
//
MyPL.set( "Which", which );
MyPL.set( "Block Size", blockSize );
MyPL.set( "Num Blocks", numBlocks );
MyPL.set( "Maximum Restarts", maxRestarts );
MyPL.set( "Convergence Tolerance", tol );
MyPL.set( "Verbosity", verbosity );
//
// Create the solver manager
Anasazi::BlockDavidsonSolMgr<double, MV, OP> MySolverMan(MyProblem, MyPL);
// Solve the problem
//
Anasazi::ReturnType returnCode = MySolverMan.solve();
// Get the eigenvalues and eigenvectors from the eigenproblem
//
Anasazi::Eigensolution<double,MV> sol = MyProblem->getSolution();
std::vector<Anasazi::Value<double> > evals = sol.Evals;
Teuchos::RCP<MV> evecs = sol.Evecs;
// Compute residuals.
//
std::vector<double> normR(sol.numVecs);
if (sol.numVecs > 0) {
Epetra_MultiVector tempAevec( Map, sol.numVecs );
T.putScalar(0.0);
for (int i=0; i<sol.numVecs; i++) {
T(i,i) = evals[i].realpart;
}
A->Apply( *evecs, tempAevec );
MVT::MvTimesMatAddMv( -1.0, *evecs, T, 1.0, tempAevec );
MVT::MvNorm( tempAevec, normR );
}
// Print the results
//
std::ostringstream os;
os.setf(std::ios_base::right, std::ios_base::adjustfield);
os<<"Solver manager returned " << (returnCode == Anasazi::Converged ? "converged." : "unconverged.") << std::endl;
os<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
os<<std::setw(16)<<"Eigenvalue"
<<std::setw(18)<<"Direct Residual"
<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
for (int i=0; i<sol.numVecs; i++) {
os<<std::setw(16)<<evals[i].realpart
<<std::setw(18)<<normR[i]/evals[i].realpart
<<std::endl;
}
os<<"------------------------------------------------------"<<std::endl;
printer.print(Anasazi::Errors,os.str());
success = true;
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(true, std::cerr, success);
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
}