#include "Epetra_CrsMatrix.h"
#include "Teuchos_StandardCatchMacros.hpp"
#include "Teuchos_Assert.hpp"
#ifdef HAVE_MPI
#include "Epetra_MpiComm.h"
#include <mpi.h>
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
#endif
bool success = false;
try {
#ifdef HAVE_MPI
#else
#endif
std::string which("SM");
cmdp.
setOption(
"sort",&which,
"Targetted eigenvalues (SM or LM).");
throw -1;
}
const int nx = 10;
const int NumGlobalElements = nx*nx;
std::vector<int> MyGlobalElements(NumMyElements);
std::vector<int> NumNz(NumMyElements);
for (int i=0; i<NumMyElements; i++) {
if (MyGlobalElements[i] == 0 || MyGlobalElements[i] == NumGlobalElements-1 ||
MyGlobalElements[i] == nx-1 || MyGlobalElements[i] == nx*(nx-1) ) {
NumNz[i] = 3;
}
else if (MyGlobalElements[i] < nx || MyGlobalElements[i] > nx*(nx-1) ||
MyGlobalElements[i]%nx == 0 || (MyGlobalElements[i]+1)%nx == 0) {
NumNz[i] = 4;
}
else {
NumNz[i] = 5;
}
}
const double one = 1.0;
std::vector<double> Values(4);
std::vector<int> Indices(4);
double rho = 0.0;
double h = one /(nx+1);
double h2 = h*h;
double c = 5.0e-01*rho/ h;
Values[0] = -one/h2 - c; Values[1] = -one/h2 + c; Values[2] = -one/h2; Values[3]= -one/h2;
double diag = 4.0 / h2;
int NumEntries;
for (int i=0; i<NumMyElements; i++)
{
if (MyGlobalElements[i]==0)
{
Indices[0] = 1;
Indices[1] = nx;
NumEntries = 2;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
}
else if (MyGlobalElements[i] == nx*(nx-1))
{
Indices[0] = nx*(nx-1)+1;
Indices[1] = nx*(nx-2);
NumEntries = 2;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
}
else if (MyGlobalElements[i] == nx-1)
{
Indices[0] = nx-2;
NumEntries = 1;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
assert( info==0 );
Indices[0] = 2*nx-1;
}
else if (MyGlobalElements[i] == NumGlobalElements-1)
{
Indices[0] = NumGlobalElements-2;
NumEntries = 1;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
assert( info==0 );
Indices[0] = nx*(nx-1)-1;
}
else if (MyGlobalElements[i] < nx)
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
}
else if (MyGlobalElements[i] > nx*(nx-1))
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
NumEntries = 3;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
}
else if (MyGlobalElements[i]%nx == 0)
{
Indices[0] = MyGlobalElements[i]+1;
Indices[1] = MyGlobalElements[i]-nx;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
}
else if ((MyGlobalElements[i]+1)%nx == 0)
{
Indices[0] = MyGlobalElements[i]-nx;
Indices[1] = MyGlobalElements[i]+nx;
NumEntries = 2;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
assert( info==0 );
Indices[0] = MyGlobalElements[i]-1;
NumEntries = 1;
}
else
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
Indices[3] = MyGlobalElements[i]+nx;
NumEntries = 4;
int info = A->
InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
}
}
A->SetTracebackMode(1);
for (int i=0; i<NumMyElements; i++)
{
Values[0] = one;
Indices[0] = i;
NumEntries = 1;
}
M->SetTracebackMode(1);
const int nev = 4;
const int blockSize = 5;
const int numBlocks = 8;
const int maxRestarts = 100;
const double tol = 1.0e-8;
ivec->Random();
MyProblem->setHermitian(true);
MyProblem->setNEV( nev );
bool boolret = MyProblem->setProblem();
if (boolret != true) {
throw -1;
}
MyPL.
set(
"Which", which );
MyPL.
set(
"Block Size", blockSize );
MyPL.
set(
"Num Blocks", numBlocks );
MyPL.
set(
"Maximum Restarts", maxRestarts );
MyPL.
set(
"Convergence Tolerance", tol );
MyPL.
set(
"Verbosity", verbosity );
std::vector<Anasazi::Value<double> > evals = sol.
Evals;
std::vector<double> normR(sol.
numVecs);
for (
int i=0; i<sol.
numVecs; i++) {
T(i,i) = evals[i].realpart;
}
A->
Apply( *evecs, tempAevec );
MVT::MvTimesMatAddMv( -1.0, *evecs, T, 1.0, tempAevec );
MVT::MvNorm( tempAevec, normR );
}
std::ostringstream os;
os.setf(std::ios_base::right, std::ios_base::adjustfield);
os<<
"Solver manager returned " << (returnCode ==
Anasazi::Converged ?
"converged." :
"unconverged.") << std::endl;
os<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
os<<std::setw(16)<<"Eigenvalue"
<<std::setw(18)<<"Direct Residual"
<<std::endl;
os<<"------------------------------------------------------"<<std::endl;
for (
int i=0; i<sol.
numVecs; i++) {
os<<std::setw(16)<<evals[i].realpart
<<std::setw(18)<<normR[i]/evals[i].realpart
<<std::endl;
}
os<<"------------------------------------------------------"<<std::endl;
success = true;
}
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
}