MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_AggregationPhase2bAlgorithm_kokkos_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Andrey Prokopenko (aprokop@sandia.gov)
41 // Ray Tuminaro (rstumin@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_AGGREGATIONPHASE2BALGORITHM_KOKKOS_DEF_HPP
47 #define MUELU_AGGREGATIONPHASE2BALGORITHM_KOKKOS_DEF_HPP
48 
49 #ifdef HAVE_MUELU_KOKKOS_REFACTOR
50 
51 #include <Teuchos_Comm.hpp>
52 #include <Teuchos_CommHelpers.hpp>
53 
54 #include <Xpetra_Vector.hpp>
55 
57 
58 #include "MueLu_Aggregates_kokkos.hpp"
59 #include "MueLu_Exceptions.hpp"
60 #include "MueLu_LWGraph_kokkos.hpp"
61 #include "MueLu_Monitor.hpp"
62 
63 namespace MueLu {
64 
65  // Try to stick unaggregated nodes into a neighboring aggregate if they are
66  // not already too big
67  template <class LocalOrdinal, class GlobalOrdinal, class Node>
68  void AggregationPhase2bAlgorithm_kokkos<LocalOrdinal, GlobalOrdinal, Node>::BuildAggregates(const ParameterList& /* params */, const LWGraph_kokkos& graph, Aggregates_kokkos& aggregates, std::vector<unsigned>& aggStat, LO& numNonAggregatedNodes) const {
69  Monitor m(*this, "BuildAggregates");
70 
71  const LO numRows = graph.GetNodeNumVertices();
72  const int myRank = graph.GetComm()->getRank();
73 
74  ArrayRCP<LO> vertex2AggId = aggregates.GetVertex2AggId()->getDataNonConst(0);
75  ArrayRCP<LO> procWinner = aggregates.GetProcWinner() ->getDataNonConst(0);
76 
77  LO numLocalAggregates = aggregates.GetNumAggregates();
78 
79  const int defaultConnectWeight = 100;
80  const int penaltyConnectWeight = 10;
81 
82  std::vector<int> aggWeight (numLocalAggregates, 0);
83  std::vector<int> connectWeight(numRows, defaultConnectWeight);
84  std::vector<int> aggPenalties (numRows, 0);
85 
86  // We do this cycle twice.
87  // I don't know why, but ML does it too
88  // taw: by running the aggregation routine more than once there is a chance that also
89  // non-aggregated nodes with a node distance of two are added to existing aggregates.
90  // Assuming that the aggregate size is 3 in each direction running the algorithm only twice
91  // should be sufficient.
92  for (int k = 0; k < 2; k++) {
93  for (LO i = 0; i < numRows; i++) {
94  if (aggStat[i] != READY)
95  continue;
96 
97  auto neighOfINode = graph.getNeighborVertices(i);
98 
99  for (int j = 0; j < as<int>(neighOfINode.length); j++) {
100  LO neigh = neighOfINode(j);
101 
102  // We don't check (neigh != i), as it is covered by checking (aggStat[neigh] == AGGREGATED)
103  if (graph.isLocalNeighborVertex(neigh) && aggStat[neigh] == AGGREGATED)
104  aggWeight[vertex2AggId[neigh]] += connectWeight[neigh];
105  }
106 
107  int bestScore = -100000;
108  int bestAggId = -1;
109  int bestConnect = -1;
110 
111  for (int j = 0; j < as<int>(neighOfINode.length); j++) {
112  LO neigh = neighOfINode(j);
113 
114  if (graph.isLocalNeighborVertex(neigh) && aggStat[neigh] == AGGREGATED) {
115  int aggId = vertex2AggId[neigh];
116  int score = aggWeight[aggId] - aggPenalties[aggId];
117 
118  if (score > bestScore) {
119  bestAggId = aggId;
120  bestScore = score;
121  bestConnect = connectWeight[neigh];
122 
123  } else if (aggId == bestAggId && connectWeight[neigh] > bestConnect) {
124  bestConnect = connectWeight[neigh];
125  }
126 
127  // Reset the weights for the next loop
128  aggWeight[aggId] = 0;
129  }
130  }
131 
132  if (bestScore >= 0) {
133  aggStat [i] = AGGREGATED;
134  vertex2AggId[i] = bestAggId;
135  procWinner [i] = myRank;
136 
137  numNonAggregatedNodes--;
138 
139  aggPenalties[bestAggId]++;
140  connectWeight[i] = bestConnect - penaltyConnectWeight;
141  }
142  }
143  }
144  }
145 
146 } // end namespace
147 
148 #endif // HAVE_MUELU_KOKKOS_REFACTOR
149 #endif // MUELU_AGGREGATIONPHASE2BALGORITHM_KOKKOS_DEF_HPP
LocalOrdinal LO