MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_AggregationPhase2aAlgorithm_kokkos_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Andrey Prokopenko (aprokop@sandia.gov)
41 // Ray Tuminaro (rstumin@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_AGGREGATIONPHASE2AALGORITHM_KOKKOS_DEF_HPP
47 #define MUELU_AGGREGATIONPHASE2AALGORITHM_KOKKOS_DEF_HPP
48 
49 #ifdef HAVE_MUELU_KOKKOS_REFACTOR
50 
51 #include <Teuchos_Comm.hpp>
52 #include <Teuchos_CommHelpers.hpp>
53 
54 #include <Xpetra_Vector.hpp>
55 
57 
58 #include "MueLu_Aggregates_kokkos.hpp"
59 #include "MueLu_Exceptions.hpp"
60 #include "MueLu_LWGraph_kokkos.hpp"
61 #include "MueLu_Monitor.hpp"
62 
63 namespace MueLu {
64 
65  template <class LocalOrdinal, class GlobalOrdinal, class Node>
66  void AggregationPhase2aAlgorithm_kokkos<LocalOrdinal, GlobalOrdinal, Node>::BuildAggregates(const ParameterList& params, const LWGraph_kokkos& graph, Aggregates_kokkos& aggregates, std::vector<unsigned>& aggStat, LO& numNonAggregatedNodes) const {
67  Monitor m(*this, "BuildAggregates");
68 
69  int minNodesPerAggregate = params.get<int>("aggregation: min agg size");
70  int maxNodesPerAggregate = params.get<int>("aggregation: max agg size");
71 
72  const LO numRows = graph.GetNodeNumVertices();
73  const int myRank = graph.GetComm()->getRank();
74 
75  ArrayRCP<LO> vertex2AggId = aggregates.GetVertex2AggId()->getDataNonConst(0);
76  ArrayRCP<LO> procWinner = aggregates.GetProcWinner() ->getDataNonConst(0);
77 
78  LO numLocalAggregates = aggregates.GetNumAggregates();
79 
80  LO numLocalNodes = procWinner.size();
81  LO numLocalAggregated = numLocalNodes - numNonAggregatedNodes;
82 
83  const double aggFactor = 0.5;
84  double factor = as<double>(numLocalAggregated)/(numLocalNodes+1);
85  factor = pow(factor, aggFactor);
86 
87  int aggIndex = -1;
88  size_t aggSize = 0;
89  std::vector<int> aggList(graph.getNodeMaxNumRowEntries());
90 
91  for (LO rootCandidate = 0; rootCandidate < numRows; rootCandidate++) {
92  if (aggStat[rootCandidate] != READY)
93  continue;
94 
95  aggSize = 0;
96 
97  auto neighOfINode = graph.getNeighborVertices(rootCandidate);
98 
99  LO numNeighbors = 0;
100  for (int j = 0; j < as<int>(neighOfINode.length); j++) {
101  LO neigh = neighOfINode(j);
102 
103  if (neigh != rootCandidate) {
104  if (graph.isLocalNeighborVertex(neigh) && aggStat[neigh] == READY) {
105  // If aggregate size does not exceed max size, add node to the tentative aggregate
106  // NOTE: We do not exit the loop over all neighbours since we have still
107  // to count all aggregated neighbour nodes for the aggregation criteria
108  // NOTE: We check here for the maximum aggregation size. If we would do it below
109  // with all the other check too big aggregates would not be accepted at all.
110  if (aggSize < as<size_t>(maxNodesPerAggregate))
111  aggList[aggSize++] = neigh;
112  }
113 
114  numNeighbors++;
115  }
116  }
117 
118  // NOTE: ML uses a hardcoded value 3 instead of MinNodesPerAggregate
119  if (aggSize > as<size_t>(minNodesPerAggregate) &&
120  aggSize > factor*numNeighbors) {
121  // Accept new aggregate
122  // rootCandidate becomes the root of the newly formed aggregate
123  aggregates.SetIsRoot(rootCandidate);
124  aggIndex = numLocalAggregates++;
125 
126  for (size_t k = 0; k < aggSize; k++) {
127  aggStat [aggList[k]] = AGGREGATED;
128  vertex2AggId[aggList[k]] = aggIndex;
129  procWinner [aggList[k]] = myRank;
130  }
131 
132  numNonAggregatedNodes -= aggSize;
133  }
134  }
135 
136  // update aggregate object
137  aggregates.SetNumAggregates(numLocalAggregates);
138  }
139 
140 } // end namespace
141 
142 #endif // HAVE_MUELU_KOKKOS_REFACTOR
143 #endif // MUELU_AGGREGATIONPHASE2AALGORITHM_KOKKOS_DEF_HPP
KOKKOS_INLINE_FUNCTION Kokkos::complex< RealType > pow(const complex< RealType > &x, const RealType &e)
LocalOrdinal LO