This is an example of how to use the TraceMinDavidsonSolMgr solver manager to compute the Fiedler vector, using Tpetra data stuctures and an Ifpack2 preconditioner.
#include "Tpetra_CrsMatrix.hpp"
#include "Tpetra_Core.hpp"
#include "Tpetra_Version.hpp"
#include "Tpetra_Map.hpp"
#include "Tpetra_MultiVector.hpp"
#include "Tpetra_Operator.hpp"
#include "Tpetra_Vector.hpp"
#include <MatrixMarket_Tpetra.hpp>
#include <TpetraExt_MatrixMatrix_def.hpp>
#include "Teuchos_ArrayViewDecl.hpp"
#ifdef HAVE_ANASAZI_IFPACK2
  #include "Ifpack2_Factory.hpp"
  #include "Ifpack2_Preconditioner.hpp"
#endif
  using std::cout;
  using std::cin;
  
  
  
  using Scalar = double;
  using CrsMatrix = Tpetra::CrsMatrix<Scalar>;
  using Vector = Tpetra::Vector<Scalar>;
  using TMV = Tpetra::MultiVector<Scalar>;
  using TOP = Tpetra::Operator<Scalar>;
void formLaplacian(const RCP<const CrsMatrix>& A, const bool weighted, const bool normalized, RCP<CrsMatrix>& L, RCP<Vector>& auxVec);
int main(int argc, char *argv[]) {
  
  
  
  Tpetra::ScopeGuard tpetraScope(&argc, &argv);
  
  
  
  RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm();
  const int myRank = comm->getRank();
  
  
  
  std::string inputFilename("/home/amklinv/matrices/mesh1em6_Laplacian.mtx");
  std::string outputFilename("/home/amklinv/matrices/mesh1em6_Fiedler.mtx");
  Scalar tol = 1e-6;
  int nev = 1;
  int blockSize = 1;
  bool usePrec = false;
  bool useNormalizedLaplacian = false;
  bool useWeightedLaplacian = false;
  bool verbose = true;
  std::string whenToShift = "Always";
  cmdp.setOption("fin",&inputFilename, "Filename for Matrix-Market test matrix.");
  cmdp.setOption("fout",&outputFilename, "Filename for Fiedler vector.");
  cmdp.setOption("tolerance",&tol, "Relative residual used for solver.");
  cmdp.setOption("nev",&nev, "Number of desired eigenpairs.");
  cmdp.setOption("blocksize",&blockSize, "Number of vectors to add to the subspace at each iteration.");
  cmdp.setOption("precondition","no-precondition",&usePrec, "Whether to use a diagonal preconditioner.");
  cmdp.setOption("normalization","no-normalization",&useNormalizedLaplacian, "Whether to normalize the laplacian.");
  cmdp.setOption("weighted","unweighted",&useWeightedLaplacian, "Whether to normalize the laplacian.");
  cmdp.setOption("verbose","quiet",&verbose, "Whether to print a lot of info or a little bit.");
  cmdp.setOption("whenToShift",&whenToShift, "When to perform Ritz shifts. Options: Never, After Trace Levels, Always.");
    return -1;
  }
  
  
  
  RCP<const CrsMatrix> fileMat =
    Tpetra::MatrixMarket::Reader<CrsMatrix>::readSparseFile(inputFilename, comm);
  
  
  
  RCP<CrsMatrix> L;
  RCP<Vector> auxVec;
  formLaplacian(fileMat, useWeightedLaplacian, useNormalizedLaplacian, L, auxVec);
  RCP<const CrsMatrix> K = L;
  
  
  
  Scalar mat_norm = K->getFrobeniusNorm();
  
  
  
  
  
  
  
  int verbosity;
  int numRestartBlocks = 2*nev/blockSize;
  int numBlocks = 10*nev/blockSize;
  if(verbose)
  else
  
  
  
  MyPL.
set( 
"Verbosity", verbosity );                  
 
  MyPL.
set( 
"Saddle Solver Type", 
"Projected Krylov"); 
 
  MyPL.
set( 
"Block Size", blockSize );                 
 
  MyPL.
set( 
"Convergence Tolerance", tol*mat_norm );   
 
  MyPL.
set( 
"Relative Convergence Tolerance", 
false);  
 
  MyPL.
set( 
"Use Locking", 
true);                      
 
  MyPL.
set( 
"Relative Locking Tolerance", 
false);      
 
  MyPL.
set(
"Num Restart Blocks", numRestartBlocks);    
 
  MyPL.
set(
"Num Blocks", numBlocks);                   
 
  MyPL.
set(
"When To Shift", whenToShift);
 
  MyPL.
set(
"Saddle Solver Type", 
"Block Diagonal Preconditioned Minres");
 
  
  
  
  
  RCP<TMV> ivec = 
Teuchos::rcp( 
new TMV(K->getRowMap(), blockSize) );
 
  TMVT::MvRandom( *ivec );
  
  
  
  RCP<Anasazi::BasicEigenproblem<Scalar,TMV,TOP> > MyProblem =
  
  
  
  MyProblem->setHermitian(true);
  
  
  
  MyProblem->setNEV( nev );
  if(usePrec)
  {
    #ifdef HAVE_ANASAZI_IFPACK2
    
    
    
    Ifpack2::Factory factory;
    const std::string precType = "RELAXATION";
    PrecPL.
set( 
"relaxation: type", 
"Jacobi");
 
    RCP<Ifpack2::Preconditioner<Scalar> > Prec = factory.create(precType, K);
    assert(Prec != Teuchos::null);
    Prec->setParameters(PrecPL);
    Prec->initialize();
    Prec->compute();
    
    
    
    MyProblem->setPrec(Prec);
    #else
    if(myRank == 0)
      cout << "You did not build Trilinos with Ifpack2 preconditioning enabled.  Please either\n1. Reinstall Trilinos with Ifpack2 enabled\n2. Try running this driver again without preconditioning enabled\n";
    return -1;
    #endif
  }
  
  
  
  MyProblem->setAuxVecs(auxVec);
  
  
  
  bool boolret = MyProblem->setProblem();
  if (boolret != true) {
    if (myRank == 0) {
      cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << std::endl;
    }
    return -1;
  }
  
  
  
  
  
  
    cout << "Anasazi::EigensolverMgr::solve() returned unconverged." << std::endl;
  }
  else if (myRank == 0)
    cout << "Anasazi::EigensolverMgr::solve() returned converged." << std::endl;
  
  
  
  std::vector<Anasazi::Value<Scalar> > evals = sol.
Evals;
 
  RCP<TMV> evecs = sol.
Evecs;
 
  
  
  
  if (numev > 0) {
    TMV tempvec(K->getRowMap(), TMVT::GetNumberVecs( *evecs ));
    std::vector<Scalar> normR(sol.
numVecs);
 
    TMV Kvec( K->getRowMap(), TMVT::GetNumberVecs( *evecs ) );
    TOPT::Apply( *K, *evecs, Kvec );
    TMVT::MvTransMv( 1.0, Kvec, *evecs, T );
    TMVT::MvTimesMatAddMv( -1.0, *evecs, T, 1.0, Kvec );
    TMVT::MvNorm( Kvec, normR );
    if (myRank == 0) {
      cout.setf(std::ios_base::right, std::ios_base::adjustfield);
      cout<<"Actual Eigenvalues (obtained by Rayleigh quotient) : "<<std::endl;
      cout<<"------------------------------------------------------"<<std::endl;
      cout<<std::setw(16)<<"Real Part"
        <<std::setw(16)<<"Error"<<std::endl;
      cout<<"------------------------------------------------------"<<std::endl;
      for (int i=0; i<numev; i++) {
        cout<<std::setw(16)<<T(i,i)
          <<std::setw(16)<<normR[i]/mat_norm
          <<std::endl;
      }
      cout<<"------------------------------------------------------"<<std::endl;
    }
  }
  
  
  
  if (numev > 0) {
    Tpetra::MatrixMarket::Writer<CrsMatrix>::writeDenseFile(outputFilename,evecs,"","Fiedler vector of "+inputFilename);
  }
  return 0;
}
void formLaplacian(const RCP<const CrsMatrix>& A, const bool weighted, const bool normalized, RCP<CrsMatrix>& L, RCP<Vector>& auxVec)
{
  
  
  
  using LO = Tpetra::Map<>::local_ordinal_type;
  using GO = Tpetra::Map<>::global_ordinal_type;
  Scalar ONE = SCT::one();
  Scalar ZERO = SCT::zero();
  std::vector<GO> diagIndex(static_cast<GO>(1));
  std::vector<LO> diagIndexLcl(static_cast<LO>(1));
  std::vector<Scalar> value(1,ONE);
  
  
  
  const GO n = A->getGlobalNumRows();
  
  
  
  
  
  
  
  
  L = Tpetra::MatrixMatrix::add(ONE,false,*A,ONE,true,*A);
  RCP<const Tpetra::Map<> > rowMap = L->getRowMap();
  
  L->resumeFill();
  if(weighted)
  {
    
    
    std::vector<GO> colIndices;
    std::vector<Scalar> values;
    
    
    
    
    
    
    for(GO i=0; i<n; i++)
    {
      
      
      if(rowMap->isNodeGlobalElement(i))
      {
        
        size_t numentries = L->getNumEntriesInGlobalRow(i);
        colIndices.resize(numentries);
        values.resize(numentries);
        
        colIndicesView = Teuchos::arrayViewFromVector(colIndices);
        valuesView = Teuchos::arrayViewFromVector(values);
        
        L->getGlobalRowCopy(i,colIndicesView,valuesView,numentries);
        for(size_t j=0; j<colIndices.size(); j++)
        {
          
          if(i == rowMap->getGlobalElement(colIndices[j]))
            values[j] = ZERO;
          
          else
            values[j] = -abs(values[j]);
          
          diagonal->sumIntoGlobalValue(i,-values[j]);
        }
        
        L->replaceGlobalValues(i, colIndicesView, valuesView);
      }
    }
    
    
    if (normalized) {
      
      for (size_type i = 0; i < diagView.
size (); ++i) {
 
        auxVec->replaceLocalValue (static_cast<LO> (i), sqrt (diagView[i]));
      }
    }
    else {
      auxVec->putScalar(ONE); 
    }
    
    Scalar vecNorm = auxVec->norm2();
    
    auxVec->scale(ONE/vecNorm);
    
    if (normalized) {
      
      Vector scaleVec (rowMap, false);
      for(size_type i=0; i<diagView.
size(); i++)
 
      {
        scaleVec.replaceLocalValue(static_cast<LO>(i),ONE/sqrt(diagView[i]));
      }
      
      
      L->fillComplete();
      
      L->leftScale(scaleVec);
      
      L->rightScale(scaleVec);
      L->resumeFill();
      
      for(GO i=0; i<n; i++)
      {
        diagIndex[0] = i;
        if(rowMap->isNodeGlobalElement(i)) L->replaceGlobalValues(i,cols,vals);
      }
    }
    else
    {
      
      for(size_type i=0; i<diagView.
size(); i++)
 
      {
        diagIndex[0] = rowMap->getGlobalElement(i);
        value[0] = diagView[i];
        L->replaceLocalValues(i,colsLcl,vals);
      }
    }
    
    L->fillComplete();
  }
  else {
    
    
    
    
    for (GO i = 0; i < n; ++i) {
      diagIndex[0] = i;
      if(rowMap->isNodeGlobalElement(i)) {
        L->replaceGlobalValues(i,cols,vals);
      }
    }
    
    L->setAllToScalar(-ONE);
    
    L->fillComplete();
    
    if (normalized) {
      
      for (GO i = 0; i < n; ++i) {
        
        
        if (rowMap->isNodeGlobalElement(i)) {
          Scalar temp;
          
          
          size_t nnzInRow = L->getNumEntriesInGlobalRow(i) - static_cast<size_t> (1);
          temp = sqrt(nnzInRow);
          
          auxVec->replaceGlobalValue(i,temp);
        }
      }
    }
    else {
      auxVec->putScalar(ONE); 
    }
    
    Scalar vecNorm = auxVec->norm2();
    
    auxVec->scale(ONE/vecNorm);
    
    if (normalized) {
      
      
      Vector scalars(rowMap,false);
      for (GO i = 0; i < n; ++i) {
        
        
        if(rowMap->isNodeGlobalElement(i)) {
          Scalar temp;
          
          
          size_t nnzInRow = L->getNumEntriesInGlobalRow(i) - static_cast<size_t> (1);
          temp = ONE/sqrt(nnzInRow);
          
          scalars.replaceGlobalValue(i,temp);
        }
      }
      
      L->leftScale(scalars);
      
      L->rightScale(scalars);
      L->resumeFill();
      
      for (GO i = 0; i < n; ++i) {
        diagIndex[0] = i;
        if(rowMap->isNodeGlobalElement(i)) L->replaceGlobalValues(i,cols,vals);
      }
    }
    else {
      L->resumeFill();
      for (GO i = 0; i < n; ++i) {
        
        
        if(rowMap->isNodeGlobalElement(i)) {
          
          
          size_t nnzInRow = L->getNumEntriesInGlobalRow(i) - static_cast<size_t> (1);
          
          diagIndex[0] = i;
          value[0] = nnzInRow;
          L->replaceGlobalValues(i,cols,vals);
        }
      }
    }
    
    L->fillComplete();
  }
}