ROL
sacado/example_02.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
55 #include <iostream>
56 
57 #include "ROL_Sacado_Objective.hpp"
58 #include "ROL_Sacado_Constraint.hpp"
59 
60 #include "ROL_Algorithm.hpp"
61 #include "ROL_CompositeStep.hpp"
63 #include "ROL_Constraint.hpp"
64 #include "ROL_ParameterList.hpp"
65 
66 #include "ROL_Stream.hpp"
67 #include "Teuchos_GlobalMPISession.hpp"
68 
69 #include "example_02.hpp"
70 
71 using namespace ROL;
72 
73 typedef double RealT;
74 
75 int main(int argc, char **argv)
76 {
77 
78 
79  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
80 
81  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
82  int iprint = argc - 1;
83  ROL::Ptr<std::ostream> outStream;
84  ROL::nullstream bhs; // outputs nothing
85  if (iprint > 0)
86  outStream = ROL::makePtrFromRef(std::cout);
87  else
88  outStream = ROL::makePtrFromRef(bhs);
89 
90  int errorFlag = 0;
91 
92  // *** Example body.
93 
94  try {
95 
96  // Run derivative checks, etc.
97  int dim = 5;
98  int nc = 3;
99 
100  ROL::Ptr< Sacado_Objective<RealT,Example_Objective> > obj =
101  ROL::makePtr<Sacado_Objective<RealT,Example_Objective>>();
102 
103  ROL::Ptr< Sacado_Constraint<RealT,Example_Constraint > > constr =
104  ROL::makePtr<Sacado_Constraint<RealT,Example_Constraint >>(nc);
105 
106  ROL::Ptr<std::vector<RealT> > x_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
107 
108  ROL::Ptr<std::vector<RealT> > sol_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
109  ROL::StdVector<RealT> x(x_ptr); // Iteration vector.
110  ROL::StdVector<RealT> sol(sol_ptr); // Reference solution vector.
111 
112  // Get initial guess
113  (*x_ptr)[0] = -1.8;
114  (*x_ptr)[1] = 1.7;
115  (*x_ptr)[2] = 1.9;
116  (*x_ptr)[3] = -0.8;
117  (*x_ptr)[4] = -0.8;
118 
119  // Get solution
120  (*sol_ptr)[0] = -1.717143570394391e+00;
121  (*sol_ptr)[1] = 1.595709690183565e+00;
122  (*sol_ptr)[2] = 1.827245752927178e+00;
123  (*sol_ptr)[3] = -7.636430781841294e-01;
124  (*sol_ptr)[4] = -7.636430781841294e-01;
125 
126  RealT left = -1e0, right = 1e0;
127  ROL::Ptr<std::vector<RealT> > xtest_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
128  ROL::Ptr<std::vector<RealT> > g_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
129  ROL::Ptr<std::vector<RealT> > d_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
130  ROL::Ptr<std::vector<RealT> > v_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
131  ROL::Ptr<std::vector<RealT> > vc_ptr = ROL::makePtr<std::vector<RealT>>(nc, 0.0);
132  ROL::Ptr<std::vector<RealT> > vl_ptr = ROL::makePtr<std::vector<RealT>>(nc, 0.0);
133  ROL::StdVector<RealT> xtest(xtest_ptr);
134  ROL::StdVector<RealT> g(g_ptr);
135  ROL::StdVector<RealT> d(d_ptr);
136  ROL::StdVector<RealT> v(v_ptr);
137  ROL::StdVector<RealT> vc(vc_ptr);
138  ROL::StdVector<RealT> vl(vl_ptr);
139 
140  // set xtest, d, v
141  for (int i=0; i<dim; i++) {
142  (*xtest_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
143  (*d_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
144  (*v_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
145  }
146  // set vc, vl
147  for (int i=0; i<nc; i++) {
148  (*vc_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
149  (*vl_ptr)[i] = ( (RealT)rand() / (RealT)RAND_MAX ) * (right - left) + left;
150  }
151 
152  obj->checkGradient(xtest, d, true, *outStream); *outStream << "\n";
153  obj->checkHessVec(xtest, v, true, *outStream); *outStream << "\n";
154  obj->checkHessSym(xtest, d, v, true, *outStream); *outStream << "\n";
155  constr->checkApplyJacobian(xtest, v, vc, true, *outStream); *outStream << "\n";
156  constr->checkApplyAdjointJacobian(xtest, vl, vc, xtest, true, *outStream); *outStream << "\n";
157  constr->checkApplyAdjointHessian(xtest, vl, d, xtest, true, *outStream); *outStream << "\n";
158 
159  ROL::Ptr<std::vector<RealT> > v1_ptr = ROL::makePtr<std::vector<RealT>>(dim, 0.0);
160  ROL::Ptr<std::vector<RealT> > v2_ptr = ROL::makePtr<std::vector<RealT>>(nc, 0.0);
161  ROL::StdVector<RealT> v1(v1_ptr);
162  ROL::StdVector<RealT> v2(v2_ptr);
163  RealT augtol = 1e-8;
164  constr->solveAugmentedSystem(v1, v2, d, vc, xtest, augtol);
165 
166  // Define algorithm.
167  std::string paramfile = "parameters.xml";
168  auto parlist = ROL::getParametersFromXmlFile(paramfile);
169  ROL::Ptr<ROL::Step<RealT>>
170  step = ROL::makePtr<ROL::CompositeStep<RealT>>(*parlist);
171  ROL::Ptr<ROL::StatusTest<RealT>>
172  status = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
173  ROL::Algorithm<RealT> algo(step,status,false);
174 
175  // Run algorithm.
176  vl.zero();
177  algo.run(x, g, vl, vc, *obj, *constr, true, *outStream);
178 
179  // Compute Error
180  *outStream << "\nReference solution x_r =\n";
181  *outStream << std::scientific << " " << (*sol_ptr)[0] << "\n";
182  *outStream << std::scientific << " " << (*sol_ptr)[1] << "\n";
183  *outStream << std::scientific << " " << (*sol_ptr)[2] << "\n";
184  *outStream << std::scientific << " " << (*sol_ptr)[3] << "\n";
185  *outStream << std::scientific << " " << (*sol_ptr)[4] << "\n";
186  *outStream << "\nOptimal solution x =\n";
187  *outStream << std::scientific << " " << (*x_ptr)[0] << "\n";
188  *outStream << std::scientific << " " << (*x_ptr)[1] << "\n";
189  *outStream << std::scientific << " " << (*x_ptr)[2] << "\n";
190  *outStream << std::scientific << " " << (*x_ptr)[3] << "\n";
191  *outStream << std::scientific << " " << (*x_ptr)[4] << "\n";
192  x.axpy(-1.0, sol);
193  RealT abserr = x.norm();
194  RealT relerr = abserr/sol.norm();
195  *outStream << std::scientific << "\n Absolute Error: " << abserr;
196  *outStream << std::scientific << "\n Relative Error: " << relerr << "\n";
197  if ( relerr > sqrt(ROL::ROL_EPSILON<RealT>()) ) {
198  errorFlag += 1;
199  }
200  }
201  catch (std::logic_error& err) {
202  *outStream << err.what() << "\n";
203  errorFlag = -1000;
204  }; // end try
205 
206  if (errorFlag != 0)
207  std::cout << "End Result: TEST FAILED\n";
208  else
209  std::cout << "End Result: TEST PASSED\n";
210 
211  return 0;
212 
213 
214 }
void axpy(const Real alpha, const Vector< Real > &x)
Compute where .
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
Real norm() const
Returns where .
Provides the ROL::Vector interface for scalar values, to be used, for example, with scalar constraint...
Provides an interface to run optimization algorithms.
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])
constexpr auto dim