ROL
example_04.cpp
Go to the documentation of this file.
1 // @HEADER
2 // ************************************************************************
3 //
4 // Rapid Optimization Library (ROL) Package
5 // Copyright (2014) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact lead developers:
38 // Drew Kouri (dpkouri@sandia.gov) and
39 // Denis Ridzal (dridzal@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
49 #include "ROL_Algorithm.hpp"
52 #include "ROL_Vector_SimOpt.hpp"
53 #include "ROL_ParameterList.hpp"
54 
55 #include "ROL_Stream.hpp"
56 #include "Teuchos_GlobalMPISession.hpp"
57 
58 #include <iostream>
59 #include <algorithm>
60 
61 #include "example_04.hpp"
62 
63 typedef double RealT;
70 
71 int main(int argc, char *argv[]) {
72 
73  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
74  // This little trick lets us print to std::cout only if a (dummy) command-line argument is provided.
75  int iprint = argc - 1;
76  ROL::Ptr<std::ostream> outStream;
77  ROL::nullstream bhs; // outputs nothing
78  if (iprint > 0)
79  outStream = ROL::makePtrFromRef(std::cout);
80  else
81  outStream = ROL::makePtrFromRef(bhs);
82 
83  int errorFlag = 0;
84 
85  // *** Example body.
86  try {
87  /*************************************************************************/
88  /************* INITIALIZE BURGERS FEM CLASS ******************************/
89  /*************************************************************************/
90  int nx = 128; // Set spatial discretization.
91  RealT alpha = 1.e-3; // Set penalty parameter.
92  RealT nu = 1e-2; // Viscosity parameter.
93  RealT nl = 1.0; // Nonlinearity parameter (1 = Burgers, 0 = linear).
94  RealT u0 = 1.0; // Dirichlet boundary condition at x=0.
95  RealT u1 = 0.0; // Dirichlet boundary condition at x=1.
96  RealT f = 0.0; // Constant volumetric force.
97  RealT cH1 = 1.0; // Scale for derivative term in H1 norm.
98  RealT cL2 = 0.0; // Scale for mass term in H1 norm.
99  ROL::Ptr<BurgersFEM<RealT> > fem
100  = ROL::makePtr<BurgersFEM<RealT>>(nx,nu,nl,u0,u1,f,cH1,cL2);
101  fem->test_inverse_mass(*outStream);
102  fem->test_inverse_H1(*outStream);
103  /*************************************************************************/
104  /************* INITIALIZE SIMOPT OBJECTIVE FUNCTION **********************/
105  /*************************************************************************/
106  ROL::Ptr<std::vector<RealT> > ud_ptr
107  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
108  ROL::Ptr<ROL::Vector<RealT> > ud
109  = ROL::makePtr<L2VectorPrimal<RealT>>(ud_ptr,fem);
110  Objective_BurgersControl<RealT> obj(fem,ud,alpha);
111  /*************************************************************************/
112  /************* INITIALIZE SIMOPT EQUALITY CONSTRAINT *********************/
113  /*************************************************************************/
114  bool useEChessian = true;
115  Constraint_BurgersControl<RealT> con(fem, useEChessian);
116  /*************************************************************************/
117  /************* INITIALIZE BOUND CONSTRAINTS ******************************/
118  /*************************************************************************/
119  // INITIALIZE STATE CONSTRAINTS
120  std::vector<RealT> Ulo(nx, 0.), Uhi(nx, 1.);
121  //std::vector<RealT> Ulo(nx, -1.e8), Uhi(nx, 1.e8);
122  ROL::Ptr<ROL::BoundConstraint<RealT> > Ubnd
123  = ROL::makePtr<H1BoundConstraint<RealT>>(Ulo,Uhi,fem);
124  //Ubnd->deactivate();
125  // INITIALIZE CONTROL CONSTRAINTS
126  //std::vector<RealT> Zlo(nx+2, -1.e8), Zhi(nx+2, 1.e8);
127  std::vector<RealT> Zlo(nx+2,0.), Zhi(nx+2,2.);
128  ROL::Ptr<ROL::BoundConstraint<RealT> > Zbnd
129  = ROL::makePtr<L2BoundConstraint<RealT>>(Zlo,Zhi,fem);
130  //Zbnd->deactivate();
131  // INITIALIZE SIMOPT BOUND CONSTRAINTS
132  ROL::BoundConstraint_SimOpt<RealT> bnd(Ubnd,Zbnd);
133  bnd.deactivate();
134  /*************************************************************************/
135  /************* INITIALIZE VECTOR STORAGE *********************************/
136  /*************************************************************************/
137  // INITIALIZE CONTROL VECTORS
138  ROL::Ptr<std::vector<RealT> > z_ptr
139  = ROL::makePtr<std::vector<RealT>>(nx+2, 0.);
140  ROL::Ptr<std::vector<RealT> > zrand_ptr
141  = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
142  ROL::Ptr<std::vector<RealT> > gz_ptr
143  = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
144  ROL::Ptr<std::vector<RealT> > yz_ptr
145  = ROL::makePtr<std::vector<RealT>>(nx+2, 1.);
146  for (int i=0; i<nx+2; i++) {
147  (*zrand_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
148  (*yz_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
149  }
150  ROL::Ptr<ROL::Vector<RealT> > zp
151  = ROL::makePtr<PrimalControlVector>(z_ptr,fem);
152  ROL::Ptr<ROL::Vector<RealT> > zrandp
153  = ROL::makePtr<PrimalControlVector>(zrand_ptr,fem);
154  ROL::Ptr<ROL::Vector<RealT> > gzp
155  = ROL::makePtr<DualControlVector>(gz_ptr,fem);
156  ROL::Ptr<ROL::Vector<RealT> > yzp
157  = ROL::makePtr<PrimalControlVector>(yz_ptr,fem);
158  // INITIALIZE STATE VECTORS
159  ROL::Ptr<std::vector<RealT> > u_ptr
160  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
161  ROL::Ptr<std::vector<RealT> > gu_ptr
162  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
163  ROL::Ptr<std::vector<RealT> > yu_ptr
164  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
165  for (int i=0; i<nx; i++) {
166  (*yu_ptr)[i] = 10.*(RealT)rand()/(RealT)RAND_MAX-5.;
167  }
168  ROL::Ptr<ROL::Vector<RealT> > up
169  = ROL::makePtr<PrimalStateVector>(u_ptr,fem);
170  ROL::Ptr<ROL::Vector<RealT> > gup
171  = ROL::makePtr<DualStateVector>(gu_ptr,fem);
172  ROL::Ptr<ROL::Vector<RealT> > yup
173  = ROL::makePtr<PrimalStateVector>(yu_ptr,fem);
174  // INITIALIZE CONSTRAINT VECTORS
175  ROL::Ptr<std::vector<RealT> > c_ptr
176  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
177  ROL::Ptr<std::vector<RealT> > l_ptr
178  = ROL::makePtr<std::vector<RealT>>(nx, 1.);
179  for (int i=0; i<nx; i++) {
180  (*l_ptr)[i] = (RealT)rand()/(RealT)RAND_MAX;
181  }
182  PrimalConstraintVector c(c_ptr,fem);
183  DualConstraintVector l(l_ptr,fem);
184  // INITIALIZE SIMOPT VECTORS
185  ROL::Vector_SimOpt<RealT> x(up,zp);
186  ROL::Vector_SimOpt<RealT> g(gup,gzp);
187  ROL::Vector_SimOpt<RealT> y(yup,yzp);
188  // READ IN XML INPUT
189  std::string filename = "input.xml";
190  auto parlist = ROL::getParametersFromXmlFile( filename );
191 
192  /*************************************************************************/
193  /************* CHECK DERIVATIVES AND CONSISTENCY *************************/
194  /*************************************************************************/
195  zp->set(*zrandp);
196  // CHECK OBJECTIVE DERIVATIVES
197  obj.checkGradient(x,g,y,true,*outStream);
198  obj.checkHessVec(x,g,y,true,*outStream);
199  // CHECK EQUALITY CONSTRAINT DERIVATIVES
200  con.checkApplyJacobian(x,y,c,true,*outStream);
201  con.checkApplyAdjointHessian(x,*yup,y,g,true,*outStream);
202  // CHECK EQUALITY CONSTRAINT CONSISTENCY
203  con.checkSolve(*up,*zp,c,true,*outStream);
204  con.checkAdjointConsistencyJacobian_1(l,*yup,*up,*zp,true,*outStream);
205  con.checkAdjointConsistencyJacobian_2(l,*yzp,*up,*zp,true,*outStream);
206  con.checkInverseJacobian_1(c,*yup,*up,*zp,true,*outStream);
207  con.checkInverseAdjointJacobian_1(c,*yup,*up,*zp,true,*outStream);
208  *outStream << "\n";
209  // CHECK PENALTY OBJECTIVE DERIVATIVES
210  ROL::Ptr<ROL::Objective<RealT> > obj_ptr = ROL::makePtrFromRef(obj);
211  ROL::Ptr<ROL::Constraint<RealT> > con_ptr = ROL::makePtrFromRef(con);
212  ROL::Ptr<ROL::BoundConstraint<RealT> > bnd_ptr = ROL::makePtrFromRef(bnd);
213  ROL::MoreauYosidaPenalty<RealT> myPen(obj_ptr,bnd_ptr,x,*parlist);
214  myPen.checkGradient(x, y, true, *outStream);
215  myPen.checkHessVec(x, g, y, true, *outStream);
216  ROL::AugmentedLagrangian<RealT> myAugLag(obj_ptr,con_ptr,l,1.,x,c,*parlist);
217  myAugLag.checkGradient(x, y, true, *outStream);
218  myAugLag.checkHessVec(x, g, y, true, *outStream);
219  /*************************************************************************/
220  /************* RUN OPTIMIZATION ******************************************/
221  /*************************************************************************/
222  // SOLVE USING MOREAU-YOSIDA PENALTY
223  ROL::Ptr<ROL::Step<RealT>>
224  stepMY = ROL::makePtr<ROL::MoreauYosidaPenaltyStep<RealT>>(*parlist);
225  ROL::Ptr<ROL::StatusTest<RealT>>
226  statusMY = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
227  ROL::Algorithm<RealT> algoMY(stepMY,statusMY,false);
228  zp->set(*zrandp);
229  RealT zerotol = std::sqrt(ROL::ROL_EPSILON<RealT>());
230  con.solve(c,*up,*zp,zerotol);
231  obj.gradient_1(*gup,*up,*zp,zerotol);
232  gup->scale(-1.0);
233  con.applyInverseAdjointJacobian_1(l,*gup,*up,*zp,zerotol);
234  gup->zero(); c.zero();
235  algoMY.run(x, g, l, c, myPen, con, bnd, true, *outStream);
236  ROL::Ptr<ROL::Vector<RealT> > xMY = x.clone();
237  xMY->set(x);
238  // SOLVE USING AUGMENTED LAGRANGIAN
239  ROL::Ptr<ROL::Step<RealT>>
240  stepAL = ROL::makePtr<ROL::AugmentedLagrangianStep<RealT>>(*parlist);
241  ROL::Ptr<ROL::StatusTest<RealT>>
242  statusAL = ROL::makePtr<ROL::ConstraintStatusTest<RealT>>(*parlist);
243  ROL::Algorithm<RealT> algoAL(stepAL,statusAL,false);
244  zp->set(*zrandp);
245  con.solve(c,*up,*zp,zerotol);
246  obj.gradient_1(*gup,*up,*zp,zerotol);
247  gup->scale(-1.0);
248  con.applyInverseAdjointJacobian_1(l,*gup,*up,*zp,zerotol);
249  gup->zero(); c.zero();
250  algoAL.run(x, g, l, c, myAugLag, con, bnd, true, *outStream);
251  // COMPARE SOLUTIONS
252  ROL::Ptr<ROL::Vector<RealT> > err = x.clone();
253  err->set(x); err->axpy(-1.,*xMY);
254  errorFlag += ((err->norm() > 1.e-7*x.norm()) ? 1 : 0);
255  }
256  catch (std::logic_error& err) {
257  *outStream << err.what() << "\n";
258  errorFlag = -1000;
259  }; // end try
260 
261  if (errorFlag != 0)
262  std::cout << "End Result: TEST FAILED\n";
263  else
264  std::cout << "End Result: TEST PASSED\n";
265 
266  return 0;
267 }
Provides the interface to evaluate the augmented Lagrangian.
virtual Real checkSolve(const Vector< Real > &u, const Vector< Real > &z, const Vector< Real > &c, const bool printToStream=true, std::ostream &outStream=std::cout)
Defines the linear algebra or vector space interface for simulation-based optimization.
void solve(ROL::Vector< Real > &c, ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Given , solve for .
Definition: example_03.hpp:485
virtual std::vector< std::string > run(Vector< Real > &x, Objective< Real > &obj, bool print=false, std::ostream &outStream=std::cout, bool printVectors=false, std::ostream &vectorStream=std::cout)
Run algorithm on unconstrained problems (Type-U). This is the primary Type-U interface.
virtual Real checkAdjointConsistencyJacobian_2(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
L2VectorPrimal< RealT > PrimalControlVector
void applyInverseAdjointJacobian_1(ROL::Vector< Real > &iajv, const ROL::Vector< Real > &v, const ROL::Vector< Real > &u, const ROL::Vector< Real > &z, Real &tol)
Apply the inverse of the adjoint of the partial constraint Jacobian at , , to the vector ...
Definition: test_04.hpp:970
Real norm() const
Returns where .
virtual void zero()
Set to zero vector.
Definition: ROL_Vector.hpp:167
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
virtual std::vector< std::vector< Real > > checkGradient(const Vector< Real > &x, const Vector< Real > &d, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference gradient check.
ROL::Ptr< Vector< Real > > clone() const
Clone to make a new (uninitialized) vector.
virtual Real checkInverseJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
H1VectorDual< RealT > DualStateVector
L2VectorDual< RealT > DualControlVector
Provides an interface to run optimization algorithms.
Provides the interface to evaluate the Moreau-Yosida penalty function.
H1VectorDual< RealT > PrimalConstraintVector
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian(const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the application of the adjoint of constraint Hessian. ...
virtual std::vector< std::vector< Real > > checkApplyJacobian(const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
Finite-difference check for the constraint Jacobian application.
basic_nullstream< char, char_traits< char >> nullstream
Definition: ROL_Stream.hpp:72
int main(int argc, char *argv[])
Provides definitions of equality constraint and objective for example_04.
virtual std::vector< std::vector< Real > > checkHessVec(const Vector< Real > &x, const Vector< Real > &v, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
Finite-difference Hessian-applied-to-vector check.
virtual Real checkAdjointConsistencyJacobian_1(const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
Check the consistency of the Jacobian and its adjoint. This is the primary interface.
H1VectorPrimal< RealT > PrimalStateVector
virtual Real checkInverseAdjointJacobian_1(const Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &u, const Vector< Real > &z, const bool printToStream=true, std::ostream &outStream=std::cout)
H1VectorPrimal< RealT > DualConstraintVector