Intrepid
test_02.cpp
1 // @HEADER
2 // ************************************************************************
3 //
4 // Intrepid Package
5 // Copyright (2007) Sandia Corporation
6 //
7 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
8 // license for use of this work by or on behalf of the U.S. Government.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // 1. Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 //
17 // 2. Redistributions in binary form must reproduce the above copyright
18 // notice, this list of conditions and the following disclaimer in the
19 // documentation and/or other materials provided with the distribution.
20 //
21 // 3. Neither the name of the Corporation nor the names of the
22 // contributors may be used to endorse or promote products derived from
23 // this software without specific prior written permission.
24 //
25 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
26 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
29 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 //
37 // Questions? Contact Pavel Bochev (pbboche@sandia.gov)
38 // Denis Ridzal (dridzal@sandia.gov), or
39 // Kara Peterson (kjpeter@sandia.gov)
40 //
41 // ************************************************************************
42 // @HEADER
43 
50 #include "Intrepid_HGRAD_PYR_C1_FEM.hpp"
53 #include "Intrepid_ArrayTools.hpp"
55 #include "Intrepid_CellTools.hpp"
56 #include "Teuchos_oblackholestream.hpp"
57 #include "Teuchos_RCP.hpp"
58 #include "Teuchos_GlobalMPISession.hpp"
59 #include "Teuchos_SerialDenseMatrix.hpp"
60 #include "Teuchos_SerialDenseVector.hpp"
61 #include "Teuchos_LAPACK.hpp"
62 
63 using namespace std;
64 using namespace Intrepid;
65 
66 void rhsFunc(FieldContainer<double> &, const FieldContainer<double> &, int, int, int);
67 void neumann(FieldContainer<double> & ,
68  const FieldContainer<double> & ,
69  const FieldContainer<double> & ,
70  const shards::CellTopology & ,
71  int, int, int, int);
72 void u_exact(FieldContainer<double> &, const FieldContainer<double> &, int, int, int);
73 
75 void rhsFunc(FieldContainer<double> & result,
76  const FieldContainer<double> & points,
77  int xd,
78  int yd,
79  int zd) {
80 
81  int x = 0, y = 1, z = 2;
82 
83  // second x-derivatives of u
84  if (xd > 1) {
85  for (int cell=0; cell<result.dimension(0); cell++) {
86  for (int pt=0; pt<result.dimension(1); pt++) {
87  result(cell,pt) = - xd*(xd-1)*std::pow(points(cell,pt,x), xd-2) *
88  std::pow(points(cell,pt,y), yd) * std::pow(points(cell,pt,z), zd);
89  }
90  }
91  }
92 
93  // second y-derivatives of u
94  if (yd > 1) {
95  for (int cell=0; cell<result.dimension(0); cell++) {
96  for (int pt=0; pt<result.dimension(1); pt++) {
97  result(cell,pt) -= yd*(yd-1)*std::pow(points(cell,pt,y), yd-2) *
98  std::pow(points(cell,pt,x), xd) * std::pow(points(cell,pt,z), zd);
99  }
100  }
101  }
102 
103  // second z-derivatives of u
104  if (zd > 1) {
105  for (int cell=0; cell<result.dimension(0); cell++) {
106  for (int pt=0; pt<result.dimension(1); pt++) {
107  result(cell,pt) -= zd*(zd-1)*std::pow(points(cell,pt,z), zd-2) *
108  std::pow(points(cell,pt,x), xd) * std::pow(points(cell,pt,y), yd);
109  }
110  }
111  }
112 
113  // add u
114  for (int cell=0; cell<result.dimension(0); cell++) {
115  for (int pt=0; pt<result.dimension(1); pt++) {
116  result(cell,pt) += std::pow(points(cell,pt,x), xd) * std::pow(points(cell,pt,y), yd) * std::pow(points(cell,pt,z), zd);
117  }
118  }
119 
120 }
121 
122 
124 void neumann(FieldContainer<double> & result,
125  const FieldContainer<double> & points,
126  const FieldContainer<double> & jacs,
127  const shards::CellTopology & parentCell,
128  int sideOrdinal, int xd, int yd, int zd) {
129 
130  int x = 0, y = 1, z = 2;
131 
132  int numCells = result.dimension(0);
133  int numPoints = result.dimension(1);
134 
135  FieldContainer<double> grad_u(numCells, numPoints, 3);
136  FieldContainer<double> side_normals(numCells, numPoints, 3);
137  FieldContainer<double> normal_lengths(numCells, numPoints);
138 
139  // first x-derivatives of u
140  if (xd > 0) {
141  for (int cell=0; cell<numCells; cell++) {
142  for (int pt=0; pt<numPoints; pt++) {
143  grad_u(cell,pt,x) = xd*std::pow(points(cell,pt,x), xd-1) *
144  std::pow(points(cell,pt,y), yd) * std::pow(points(cell,pt,z), zd);
145  }
146  }
147  }
148 
149  // first y-derivatives of u
150  if (yd > 0) {
151  for (int cell=0; cell<numCells; cell++) {
152  for (int pt=0; pt<numPoints; pt++) {
153  grad_u(cell,pt,y) = yd*std::pow(points(cell,pt,y), yd-1) *
154  std::pow(points(cell,pt,x), xd) * std::pow(points(cell,pt,z), zd);
155  }
156  }
157  }
158 
159  // first z-derivatives of u
160  if (zd > 0) {
161  for (int cell=0; cell<numCells; cell++) {
162  for (int pt=0; pt<numPoints; pt++) {
163  grad_u(cell,pt,z) = zd*std::pow(points(cell,pt,z), zd-1) *
164  std::pow(points(cell,pt,x), xd) * std::pow(points(cell,pt,y), yd);
165  }
166  }
167  }
168 
169  CellTools<double>::getPhysicalSideNormals(side_normals, jacs, sideOrdinal, parentCell);
170 
171  // scale normals
172  RealSpaceTools<double>::vectorNorm(normal_lengths, side_normals, NORM_TWO);
173  FunctionSpaceTools::scalarMultiplyDataData<double>(side_normals, normal_lengths, side_normals, true);
174 
175  FunctionSpaceTools::dotMultiplyDataData<double>(result, grad_u, side_normals);
176 
177 }
178 
180 void u_exact(FieldContainer<double> & result, const FieldContainer<double> & points, int xd, int yd, int zd) {
181  int x = 0, y = 1, z = 2;
182  for (int cell=0; cell<result.dimension(0); cell++) {
183  for (int pt=0; pt<result.dimension(1); pt++) {
184  result(cell,pt) = std::pow(points(pt,x), xd)*std::pow(points(pt,y), yd)*std::pow(points(pt,z), zd);
185  }
186  }
187 }
188 
189 
190 
191 
192 int main(int argc, char *argv[]) {
193 
194  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
195 
196  // This little trick lets us print to std::cout only if
197  // a (dummy) command-line argument is provided.
198  int iprint = argc - 1;
199  Teuchos::RCP<std::ostream> outStream;
200  Teuchos::oblackholestream bhs; // outputs nothing
201  if (iprint > 0)
202  outStream = Teuchos::rcp(&std::cout, false);
203  else
204  outStream = Teuchos::rcp(&bhs, false);
205 
206  // Save the format state of the original std::cout.
207  Teuchos::oblackholestream oldFormatState;
208  oldFormatState.copyfmt(std::cout);
209 
210  *outStream \
211  << "===============================================================================\n" \
212  << "| |\n" \
213  << "| Unit Test (Basis_HGRAD_PYR_C1_FEM) |\n" \
214  << "| |\n" \
215  << "| 1) Patch test involving mass and stiffness matrices, |\n" \
216  << "| for the Neumann problem on a pyramid patch |\n" \
217  << "| Omega with boundary Gamma. |\n" \
218  << "| |\n" \
219  << "| - div (grad u) + u = f in Omega, (grad u) . n = g on Gamma |\n" \
220  << "| |\n" \
221  << "| Questions? Contact Pavel Bochev (pbboche@sandia.gov), |\n" \
222  << "| Denis Ridzal (dridzal@sandia.gov), |\n" \
223  << "| Kara Peterson (kjpeter@sandia.gov). |\n" \
224  << "| Mauro Perego (mperego@sandia.gov). |\n" \
225  << "| |\n" \
226  << "| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n" \
227  << "| Trilinos website: http://trilinos.sandia.gov |\n" \
228  << "| |\n" \
229  << "===============================================================================\n"\
230  << "| TEST 1: Patch test |\n"\
231  << "===============================================================================\n";
232 
233 
234  int errorFlag = 0;
235 
236  outStream -> precision(16);
237 
238 
239  try {
240 
241  int max_order = 1; // max total order of polynomial solution
242  DefaultCubatureFactory<double> cubFactory; // create factory
243  shards::CellTopology cell(shards::getCellTopologyData< shards::Pyramid<> >()); // create parent cell topology
244  shards::CellTopology sideQ(shards::getCellTopologyData< shards::Quadrilateral<> >()); // create relevant subcell (side) topology
245  shards::CellTopology sideT(shards::getCellTopologyData< shards::Triangle<> >());
246  int cellDim = cell.getDimension();
247  int sideQDim = sideQ.getDimension();
248  int sideTDim = sideT.getDimension();
249 
250  // Define array containing points at which the solution is evaluated, on the reference Pyramid.
251  int numIntervals = 10;
252  int numInterpPoints = ((numIntervals + 1)*(numIntervals + 2)*(numIntervals + 3))/6;
253  FieldContainer<double> interp_points_ref(numInterpPoints, 3);
254  int counter = 0;
255  for (int k=0; k<=numIntervals; k++) {
256  for (int j=0; j<=numIntervals; j++) {
257  for (int i=0; i<=numIntervals; i++) {
258  if (i+j+k <= numIntervals) {
259  interp_points_ref(counter,0) = i*(1.0/numIntervals);
260  interp_points_ref(counter,1) = j*(1.0/numIntervals);
261  interp_points_ref(counter,2) = k*(1.0/numIntervals);
262  counter++;
263  }
264  }
265  }
266  }
267 
268  /* Definition of parent cell. */
269  FieldContainer<double> cell_nodes(1, 5, cellDim);
270  // funky Pyramid (affine mapping)
271  cell_nodes(0, 0, 0) = -1.0;
272  cell_nodes(0, 0, 1) = 3.0;
273  cell_nodes(0, 0, 2) = 2.0;
274  cell_nodes(0, 1, 0) = 3.0;
275  cell_nodes(0, 1, 1) = -2.0;
276  cell_nodes(0, 1, 2) = -1.0;
277  cell_nodes(0, 2, 0) = 6.0;
278  cell_nodes(0, 2, 1) = 3.0;
279  cell_nodes(0, 2, 2) = -1.0;
280  cell_nodes(0, 3, 0) = 4.0;
281  cell_nodes(0, 3, 1) = 2.0;
282  cell_nodes(0, 3, 2) = -2.0;
283  cell_nodes(0, 4, 0) = 5.0;
284  cell_nodes(0, 4, 1) = -1.0;
285  cell_nodes(0, 4, 2) = 1.0;
286 
287  // perturbed reference Pyramid
288  /*cell_nodes(0, 0, 0) = -1.1;
289  cell_nodes(0, 0, 1) = -1.1;
290  cell_nodes(0, 0, 2) = 0.2;
291  cell_nodes(0, 1, 0) = 1.2;
292  cell_nodes(0, 1, 1) = -1.1;
293  cell_nodes(0, 1, 2) = 0.05;
294  cell_nodes(0, 2, 0) = 1.0;
295  cell_nodes(0, 2, 1) = 0.9;
296  cell_nodes(0, 2, 2) = 0.1;
297  cell_nodes(0, 3, 0) = -1.1;
298  cell_nodes(0, 3, 1) = 0.9;
299  cell_nodes(0, 3, 2) = -0.1;
300  cell_nodes(0, 4, 0) = 0.1;
301  cell_nodes(0, 4, 1) = -0.1;
302  cell_nodes(0, 4, 2) = 1.1; */
303 
304  // reference Pyramid
305  /*cell_nodes(0, 0, 0) = -1.0;
306  cell_nodes(0, 0, 1) = -1.0;
307  cell_nodes(0, 0, 2) = 0.0;
308  cell_nodes(0, 1, 0) = 1.0;
309  cell_nodes(0, 1, 1) = -1.0;
310  cell_nodes(0, 1, 2) = 0.0;
311  cell_nodes(0, 2, 0) = 1.0;
312  cell_nodes(0, 2, 1) = 1.0;
313  cell_nodes(0, 2, 2) = 0.0;
314  cell_nodes(0, 3, 0) = -1.0;
315  cell_nodes(0, 3, 1) = 1.0;
316  cell_nodes(0, 3, 2) = 1.0;
317  cell_nodes(0, 4, 0) = 0.0;
318  cell_nodes(0, 4, 1) = 0.0;
319  cell_nodes(0, 4, 2) = 1.0; */
320 
321 
322  FieldContainer<double> interp_points(1, numInterpPoints, cellDim);
323  CellTools<double>::mapToPhysicalFrame(interp_points, interp_points_ref, cell_nodes, cell);
324  interp_points.resize(numInterpPoints, cellDim);
325 
326  for (int x_order=0; x_order <= max_order; x_order++) {
327  for (int y_order=0; y_order <= max_order-x_order; y_order++) {
328  for (int z_order=0; z_order <= max_order-x_order-y_order; z_order++) {
329 
330  // evaluate exact solution
331  FieldContainer<double> exact_solution(1, numInterpPoints);
332  u_exact(exact_solution, interp_points, x_order, y_order, z_order);
333 
334  int basis_order = 1;
335 
336  // set test tolerance;
337  double zero = basis_order*basis_order*basis_order*100*INTREPID_TOL;
338 
339  //create basis
340  Teuchos::RCP<Basis<double,FieldContainer<double> > > basis =
341  Teuchos::rcp(new Basis_HGRAD_PYR_C1_FEM<double,FieldContainer<double> >() );
342  int numFields = basis->getCardinality();
343 
344  // create cubatures
345  Teuchos::RCP<Cubature<double> > cellCub = cubFactory.create(cell, 2*basis_order);
346  Teuchos::RCP<Cubature<double> > sideQCub = cubFactory.create(sideQ, 2*basis_order);
347  Teuchos::RCP<Cubature<double> > sideTCub = cubFactory.create(sideT, 2*basis_order);
348  int numCubPointsCell = cellCub->getNumPoints();
349  int numCubPointsSideQ = sideQCub->getNumPoints();
350  int numCubPointsSideT = sideTCub->getNumPoints();
351 
352  /* Computational arrays. */
353  /* Section 1: Related to parent cell integration. */
354  FieldContainer<double> cub_points_cell(numCubPointsCell, cellDim);
355  FieldContainer<double> cub_points_cell_physical(1, numCubPointsCell, cellDim);
356  FieldContainer<double> cub_weights_cell(numCubPointsCell);
357  FieldContainer<double> jacobian_cell(1, numCubPointsCell, cellDim, cellDim);
358  FieldContainer<double> jacobian_inv_cell(1, numCubPointsCell, cellDim, cellDim);
359  FieldContainer<double> jacobian_det_cell(1, numCubPointsCell);
360  FieldContainer<double> weighted_measure_cell(1, numCubPointsCell);
361 
362  FieldContainer<double> value_of_basis_at_cub_points_cell(numFields, numCubPointsCell);
363  FieldContainer<double> transformed_value_of_basis_at_cub_points_cell(1, numFields, numCubPointsCell);
364  FieldContainer<double> weighted_transformed_value_of_basis_at_cub_points_cell(1, numFields, numCubPointsCell);
365  FieldContainer<double> grad_of_basis_at_cub_points_cell(numFields, numCubPointsCell, cellDim);
366  FieldContainer<double> transformed_grad_of_basis_at_cub_points_cell(1, numFields, numCubPointsCell, cellDim);
367  FieldContainer<double> weighted_transformed_grad_of_basis_at_cub_points_cell(1, numFields, numCubPointsCell, cellDim);
368  FieldContainer<double> fe_matrix(1, numFields, numFields);
369 
370  FieldContainer<double> rhs_at_cub_points_cell_physical(1, numCubPointsCell);
371  FieldContainer<double> rhs_and_soln_vector(1, numFields);
372 
373  /* Section 2: Related to subcell (side) integration. */
374  unsigned numSides = 5;
375  unsigned numSidesT = 4;
376  FieldContainer<double> cub_points_sideQ(numCubPointsSideQ, sideQDim);
377  FieldContainer<double> cub_points_sideT(numCubPointsSideT, sideTDim);
378  FieldContainer<double> cub_weights_sideQ(numCubPointsSideQ);
379  FieldContainer<double> cub_weights_sideT(numCubPointsSideT);
380  FieldContainer<double> cub_points_sideQ_refcell(numCubPointsSideQ, cellDim);
381  FieldContainer<double> cub_points_sideT_refcell(numCubPointsSideT, cellDim);
382  FieldContainer<double> cub_points_sideQ_physical(1, numCubPointsSideQ, cellDim);
383  FieldContainer<double> cub_points_sideT_physical(1, numCubPointsSideT, cellDim);
384  FieldContainer<double> jacobian_sideQ_refcell(1, numCubPointsSideQ, cellDim, cellDim);
385  FieldContainer<double> jacobian_sideT_refcell(1, numCubPointsSideT, cellDim, cellDim);
386  FieldContainer<double> jacobian_det_sideQ_refcell(1, numCubPointsSideQ);
387  FieldContainer<double> jacobian_det_sideT_refcell(1, numCubPointsSideT);
388  FieldContainer<double> weighted_measure_sideQ_refcell(1, numCubPointsSideQ);
389  FieldContainer<double> weighted_measure_sideT_refcell(1, numCubPointsSideT);
390 
391  FieldContainer<double> value_of_basis_at_cub_points_sideQ_refcell(numFields, numCubPointsSideQ);
392  FieldContainer<double> value_of_basis_at_cub_points_sideT_refcell(numFields, numCubPointsSideT);
393  FieldContainer<double> transformed_value_of_basis_at_cub_points_sideQ_refcell(1, numFields, numCubPointsSideQ);
394  FieldContainer<double> transformed_value_of_basis_at_cub_points_sideT_refcell(1, numFields, numCubPointsSideT);
395  FieldContainer<double> weighted_transformed_value_of_basis_at_cub_points_sideQ_refcell(1, numFields, numCubPointsSideQ);
396  FieldContainer<double> weighted_transformed_value_of_basis_at_cub_points_sideT_refcell(1, numFields, numCubPointsSideT);
397  FieldContainer<double> neumann_data_at_cub_points_sideQ_physical(1, numCubPointsSideQ);
398  FieldContainer<double> neumann_data_at_cub_points_sideT_physical(1, numCubPointsSideT);
399  FieldContainer<double> neumann_fields_per_side(1, numFields);
400 
401  /* Section 3: Related to global interpolant. */
402  FieldContainer<double> value_of_basis_at_interp_points_ref(numFields, numInterpPoints);
403  FieldContainer<double> transformed_value_of_basis_at_interp_points_ref(1, numFields, numInterpPoints);
404  FieldContainer<double> interpolant(1, numInterpPoints);
405 
406  FieldContainer<int> ipiv(numFields);
407 
408 
409 
410  /******************* START COMPUTATION ***********************/
411 
412  // get cubature points and weights
413  cellCub->getCubature(cub_points_cell, cub_weights_cell);
414 
415  // compute geometric cell information
416  CellTools<double>::setJacobian(jacobian_cell, cub_points_cell, cell_nodes, cell);
417  CellTools<double>::setJacobianInv(jacobian_inv_cell, jacobian_cell);
418  CellTools<double>::setJacobianDet(jacobian_det_cell, jacobian_cell);
419 
420  // compute weighted measure
421  FunctionSpaceTools::computeCellMeasure<double>(weighted_measure_cell, jacobian_det_cell, cub_weights_cell);
422 
424  // Computing mass matrices:
425  // tabulate values of basis functions at (reference) cubature points
426  basis->getValues(value_of_basis_at_cub_points_cell, cub_points_cell, OPERATOR_VALUE);
427 
428  // transform values of basis functions
429  FunctionSpaceTools::HGRADtransformVALUE<double>(transformed_value_of_basis_at_cub_points_cell,
430  value_of_basis_at_cub_points_cell);
431 
432  // multiply with weighted measure
433  FunctionSpaceTools::multiplyMeasure<double>(weighted_transformed_value_of_basis_at_cub_points_cell,
434  weighted_measure_cell,
435  transformed_value_of_basis_at_cub_points_cell);
436 
437  // compute mass matrices
438  FunctionSpaceTools::integrate<double>(fe_matrix,
439  transformed_value_of_basis_at_cub_points_cell,
440  weighted_transformed_value_of_basis_at_cub_points_cell,
441  COMP_BLAS);
443 
445  // Computing stiffness matrices:
446  // tabulate gradients of basis functions at (reference) cubature points
447  basis->getValues(grad_of_basis_at_cub_points_cell, cub_points_cell, OPERATOR_GRAD);
448 
449  // transform gradients of basis functions
450  FunctionSpaceTools::HGRADtransformGRAD<double>(transformed_grad_of_basis_at_cub_points_cell,
451  jacobian_inv_cell,
452  grad_of_basis_at_cub_points_cell);
453 
454  // multiply with weighted measure
455  FunctionSpaceTools::multiplyMeasure<double>(weighted_transformed_grad_of_basis_at_cub_points_cell,
456  weighted_measure_cell,
457  transformed_grad_of_basis_at_cub_points_cell);
458 
459  // compute stiffness matrices and sum into fe_matrix
460  FunctionSpaceTools::integrate<double>(fe_matrix,
461  transformed_grad_of_basis_at_cub_points_cell,
462  weighted_transformed_grad_of_basis_at_cub_points_cell,
463  COMP_BLAS,
464  true);
466 
468  // Computing RHS contributions:
469  // map cell (reference) cubature points to physical space
470  CellTools<double>::mapToPhysicalFrame(cub_points_cell_physical, cub_points_cell, cell_nodes, cell);
471 
472  // evaluate rhs function
473  rhsFunc(rhs_at_cub_points_cell_physical, cub_points_cell_physical, x_order, y_order, z_order);
474 
475  // compute rhs
476  FunctionSpaceTools::integrate<double>(rhs_and_soln_vector,
477  rhs_at_cub_points_cell_physical,
478  weighted_transformed_value_of_basis_at_cub_points_cell,
479  COMP_BLAS);
480 
481  // compute neumann b.c. contributions and adjust rhs
482  sideQCub->getCubature(cub_points_sideQ, cub_weights_sideQ);
483  sideTCub->getCubature(cub_points_sideT, cub_weights_sideT);
484 
485  for (unsigned i=0; i<numSidesT; i++) {
486  // compute geometric cell information
487  CellTools<double>::mapToReferenceSubcell(cub_points_sideT_refcell, cub_points_sideT, sideTDim, (int)i, cell);
488  CellTools<double>::setJacobian(jacobian_sideT_refcell, cub_points_sideT_refcell, cell_nodes, cell);
489  CellTools<double>::setJacobianDet(jacobian_det_sideT_refcell, jacobian_sideT_refcell);
490 
491  // compute weighted face measure
492  FunctionSpaceTools::computeFaceMeasure<double>(weighted_measure_sideT_refcell,
493  jacobian_sideT_refcell,
494  cub_weights_sideT,
495  i,
496  cell);
497 
498  // tabulate values of basis functions at side cubature points, in the reference parent cell domain
499  basis->getValues(value_of_basis_at_cub_points_sideT_refcell, cub_points_sideT_refcell, OPERATOR_VALUE);
500  // transform
501  FunctionSpaceTools::HGRADtransformVALUE<double>(transformed_value_of_basis_at_cub_points_sideT_refcell,
502  value_of_basis_at_cub_points_sideT_refcell);
503 
504  // multiply with weighted measure
505  FunctionSpaceTools::multiplyMeasure<double>(weighted_transformed_value_of_basis_at_cub_points_sideT_refcell,
506  weighted_measure_sideT_refcell,
507  transformed_value_of_basis_at_cub_points_sideT_refcell);
508 
509  // compute Neumann data
510  // map side cubature points in reference parent cell domain to physical space
511  CellTools<double>::mapToPhysicalFrame(cub_points_sideT_physical, cub_points_sideT_refcell, cell_nodes, cell);
512  // now compute data
513  neumann(neumann_data_at_cub_points_sideT_physical, cub_points_sideT_physical, jacobian_sideT_refcell,
514  cell, (int)i, x_order, y_order, z_order);
515 
516  FunctionSpaceTools::integrate<double>(neumann_fields_per_side,
517  neumann_data_at_cub_points_sideT_physical,
518  weighted_transformed_value_of_basis_at_cub_points_sideT_refcell,
519  COMP_BLAS);
520 
521  // adjust RHS
522  RealSpaceTools<double>::add(rhs_and_soln_vector, neumann_fields_per_side);;
523  }
524 
525  for (unsigned i=numSidesT; i<numSides; i++) {
526  // compute geometric cell information
527  CellTools<double>::mapToReferenceSubcell(cub_points_sideQ_refcell, cub_points_sideQ, sideQDim, (int)i, cell);
528  CellTools<double>::setJacobian(jacobian_sideQ_refcell, cub_points_sideQ_refcell, cell_nodes, cell);
529  CellTools<double>::setJacobianDet(jacobian_det_sideQ_refcell, jacobian_sideQ_refcell);
530 
531  // compute weighted face measure
532  FunctionSpaceTools::computeFaceMeasure<double>(weighted_measure_sideQ_refcell,
533  jacobian_sideQ_refcell,
534  cub_weights_sideQ,
535  i,
536  cell);
537 
538  // tabulate values of basis functions at side cubature points, in the reference parent cell domain
539  basis->getValues(value_of_basis_at_cub_points_sideQ_refcell, cub_points_sideQ_refcell, OPERATOR_VALUE);
540  // transform
541  FunctionSpaceTools::HGRADtransformVALUE<double>(transformed_value_of_basis_at_cub_points_sideQ_refcell,
542  value_of_basis_at_cub_points_sideQ_refcell);
543 
544  // multiply with weighted measure
545  FunctionSpaceTools::multiplyMeasure<double>(weighted_transformed_value_of_basis_at_cub_points_sideQ_refcell,
546  weighted_measure_sideQ_refcell,
547  transformed_value_of_basis_at_cub_points_sideQ_refcell);
548 
549  // compute Neumann data
550  // map side cubature points in reference parent cell domain to physical space
551  CellTools<double>::mapToPhysicalFrame(cub_points_sideQ_physical, cub_points_sideQ_refcell, cell_nodes, cell);
552  // now compute data
553  neumann(neumann_data_at_cub_points_sideQ_physical, cub_points_sideQ_physical, jacobian_sideQ_refcell,
554  cell, (int)i, x_order, y_order, z_order);
555 
556  FunctionSpaceTools::integrate<double>(neumann_fields_per_side,
557  neumann_data_at_cub_points_sideQ_physical,
558  weighted_transformed_value_of_basis_at_cub_points_sideQ_refcell,
559  COMP_BLAS);
560 
561  // adjust RHS
562  RealSpaceTools<double>::add(rhs_and_soln_vector, neumann_fields_per_side);;
563  }
565 
567  // Solution of linear system:
568  int info = 0;
569  Teuchos::LAPACK<int, double> solver;
570  solver.GESV(numFields, 1, &fe_matrix[0], numFields, &ipiv(0), &rhs_and_soln_vector[0], numFields, &info);
572 
574  // Building interpolant:
575  // evaluate basis at interpolation points
576  basis->getValues(value_of_basis_at_interp_points_ref, interp_points_ref, OPERATOR_VALUE);
577  // transform values of basis functions
578  FunctionSpaceTools::HGRADtransformVALUE<double>(transformed_value_of_basis_at_interp_points_ref,
579  value_of_basis_at_interp_points_ref);
580  FunctionSpaceTools::evaluate<double>(interpolant, rhs_and_soln_vector, transformed_value_of_basis_at_interp_points_ref);
582 
583  /******************* END COMPUTATION ***********************/
584 
585  RealSpaceTools<double>::subtract(interpolant, exact_solution);
586 
587  *outStream << "\nRelative norm-2 error between exact solution polynomial of order ("
588  << x_order << ", " << y_order << ", " << z_order
589  << ") and finite element interpolant of order " << basis_order << ": "
590  << RealSpaceTools<double>::vectorNorm(&interpolant[0], interpolant.dimension(1), NORM_TWO) /
591  RealSpaceTools<double>::vectorNorm(&exact_solution[0], exact_solution.dimension(1), NORM_TWO) << "\n";
592 
593  if (RealSpaceTools<double>::vectorNorm(&interpolant[0], interpolant.dimension(1), NORM_TWO) /
594  RealSpaceTools<double>::vectorNorm(&exact_solution[0], exact_solution.dimension(1), NORM_TWO) > zero) {
595  *outStream << "\n\nPatch test failed for solution polynomial order ("
596  << x_order << ", " << y_order << ", " << z_order << ") and basis order " << basis_order << "\n\n";
597  errorFlag++;
598  }
599  } // end for z_order
600  } // end for y_order
601  } // end for x_order
602 
603  }
604  // Catch unexpected errors
605  catch (const std::logic_error & err) {
606  *outStream << err.what() << "\n\n";
607  errorFlag = -1000;
608  };
609 
610  if (errorFlag != 0)
611  std::cout << "End Result: TEST FAILED\n";
612  else
613  std::cout << "End Result: TEST PASSED\n";
614 
615  // reset format state of std::cout
616  std::cout.copyfmt(oldFormatState);
617 
618  return errorFlag;
619 }
Implementation of basic linear algebra functionality in Euclidean space.
Header file for the Intrepid::CellTools class.
int dimension(const int whichDim) const
Returns the specified dimension.
Header file for utility class to provide multidimensional containers.
Header file for utility class to provide array tools, such as tensor contractions, etc.
Header file for the abstract base class Intrepid::DefaultCubatureFactory.
Header file for the Intrepid::FunctionSpaceTools class.
Header file for classes providing basic linear algebra functionality in 1D, 2D and 3D...
Implementation of the default H(grad)-compatible FEM basis of degree 1 on Pyramid cell...
A factory class that generates specific instances of cubatures.
Teuchos::RCP< Cubature< Scalar, ArrayPoint, ArrayWeight > > create(const shards::CellTopology &cellTopology, const std::vector< int > &degree)
Factory method.
A stateless class for operations on cell data. Provides methods for: