9 #include <Compadre_Config.h>
16 #ifdef COMPADRE_USE_MPI
20 #include <Kokkos_Timer.hpp>
21 #include <Kokkos_Core.hpp>
23 using namespace Compadre;
28 int main (
int argc,
char* args[]) {
31 #ifdef COMPADRE_USE_MPI
32 MPI_Init(&argc, &args);
36 Kokkos::initialize(argc, args);
39 bool all_passed =
true;
48 int constraint_type = 0;
50 int arg7toi = atoi(args[6]);
52 constraint_type = arg7toi;
62 int arg6toi = atoi(args[5]);
64 problem_type = arg6toi;
75 int arg5toi = atoi(args[4]);
77 solver_type = arg5toi;
85 int arg4toi = atoi(args[3]);
93 int number_target_coords = 200;
95 int arg3toi = atoi(args[2]);
97 number_target_coords = arg3toi;
105 int arg2toi = atoi(args[1]);
113 const double failure_tolerance = 1e-9;
120 Kokkos::Profiling::pushRegion(
"Setup Point Data");
124 double h_spacing = 0.05;
125 int n_neg1_to_1 = 2*(1/h_spacing) + 1;
128 const int number_source_coords = std::pow(n_neg1_to_1, dimension);
131 Kokkos::View<double**, Kokkos::DefaultExecutionSpace> source_coords_device(
"source coordinates",
132 number_source_coords, 3);
133 Kokkos::View<double**>::HostMirror source_coords = Kokkos::create_mirror_view(source_coords_device);
136 Kokkos::View<double**, Kokkos::DefaultExecutionSpace> target_coords_device (
"target coordinates", number_target_coords, 3);
137 Kokkos::View<double**>::HostMirror target_coords = Kokkos::create_mirror_view(target_coords_device);
141 int source_index = 0;
142 double this_coord[3] = {0,0,0};
143 for (
int i=-n_neg1_to_1/2; i<n_neg1_to_1/2+1; ++i) {
144 this_coord[0] = i*h_spacing;
145 for (
int j=-n_neg1_to_1/2; j<n_neg1_to_1/2+1; ++j) {
146 this_coord[1] = j*h_spacing;
147 for (
int k=-n_neg1_to_1/2; k<n_neg1_to_1/2+1; ++k) {
148 this_coord[2] = k*h_spacing;
150 source_coords(source_index,0) = this_coord[0];
151 source_coords(source_index,1) = this_coord[1];
152 source_coords(source_index,2) = this_coord[2];
157 source_coords(source_index,0) = this_coord[0];
158 source_coords(source_index,1) = this_coord[1];
159 source_coords(source_index,2) = 0;
164 source_coords(source_index,0) = this_coord[0];
165 source_coords(source_index,1) = 0;
166 source_coords(source_index,2) = 0;
175 std::mt19937 rng(50);
177 std::uniform_int_distribution<int> gen_num_neighbours(0, source_index);
179 for (
int i=0; i<number_target_coords; ++i) {
180 const int source_site_to_copy = gen_num_neighbours(rng);
181 for (
int j=0; j<3; j++) {
182 target_coords(i, j) = source_coords(source_site_to_copy, j);
188 Kokkos::Profiling::popRegion();
189 Kokkos::Profiling::pushRegion(
"Creating Data");
195 Kokkos::deep_copy(source_coords_device, source_coords);
198 Kokkos::deep_copy(target_coords_device, target_coords);
201 Kokkos::View<double**, Kokkos::DefaultExecutionSpace> vector_sampling_span_basis_data_device(
"samples of true vector solution",
202 source_coords_device.extent(0), dimension);
203 Kokkos::View<double**, Kokkos::DefaultExecutionSpace> vector_sampling_single_polynomial_data_device(
"samples of true vector solution",
204 source_coords_device.extent(0), dimension);
206 Kokkos::parallel_for(
"Sampling Manufactured Solutions", Kokkos::RangePolicy<Kokkos::DefaultExecutionSpace>
207 (0,source_coords.extent(0)), KOKKOS_LAMBDA(
const int i) {
209 double xval = source_coords_device(i,0);
210 double yval = (dimension>1) ? source_coords_device(i,1) : 0;
211 double zval = (dimension>2) ? source_coords_device(i,2) : 0;
214 for (
int j=0; j<dimension; ++j) {
223 Kokkos::Profiling::popRegion();
224 Kokkos::Profiling::pushRegion(
"Neighbor Search");
236 double epsilon_multiplier = 2.2;
237 int estimated_upper_bound_number_neighbors =
238 point_cloud_search.getEstimatedNumberNeighborsUpperBound(min_neighbors, dimension, epsilon_multiplier);
240 Kokkos::View<int**, Kokkos::DefaultExecutionSpace> neighbor_lists_device(
"neighbor lists",
241 number_target_coords, estimated_upper_bound_number_neighbors);
242 Kokkos::View<int**>::HostMirror neighbor_lists = Kokkos::create_mirror_view(neighbor_lists_device);
245 Kokkos::View<double*, Kokkos::DefaultExecutionSpace> epsilon_device(
"h supports", number_target_coords);
246 Kokkos::View<double*>::HostMirror epsilon = Kokkos::create_mirror_view(epsilon_device);
251 point_cloud_search.generate2DNeighborListsFromKNNSearch(
false , target_coords, neighbor_lists,
252 epsilon, min_neighbors, epsilon_multiplier);
256 Kokkos::Profiling::popRegion();
267 Kokkos::deep_copy(neighbor_lists_device, neighbor_lists);
268 Kokkos::deep_copy(epsilon_device, epsilon);
271 std::string solver_name;
272 if (solver_type == 0) {
274 }
else if (solver_type == 1) {
276 }
else if (solver_type == 2) {
281 std::string problem_name;
282 if (problem_type == 0) {
283 problem_name =
"STANDARD";
284 }
else if (problem_type == 1) {
285 problem_name =
"MANIFOLD";
289 std::string constraint_name;
290 if (constraint_type == 0) {
291 constraint_name =
"NO_CONSTRAINT";
292 }
else if (constraint_type == 1) {
293 constraint_name =
"NEUMANN_GRAD_SCALAR";
302 solver_name.c_str(), problem_name.c_str(), constraint_name.c_str(),
319 vector_divfree_basis_gmls.
setProblemData(neighbor_lists_device, source_coords_device, target_coords_device, epsilon_device);
322 std::vector<TargetOperation> lro(4);
329 vector_divfree_basis_gmls.addTargets(lro);
335 vector_divfree_basis_gmls.setWeightingPower(2);
338 vector_divfree_basis_gmls.generateAlphas(15 );
342 double instantiation_time = timer.seconds();
343 std::cout <<
"Took " << instantiation_time <<
"s to complete alphas generation." << std::endl;
345 Kokkos::Profiling::pushRegion(
"Apply Alphas to Data");
359 Evaluator gmls_evaluator_vector(&vector_divfree_basis_gmls);
373 Kokkos::Profiling::popRegion();
375 Kokkos::Profiling::pushRegion(
"Comparison");
380 for (
int i=0; i<number_target_coords; i++) {
382 double GMLS_DivFree_VectorX = output_vector_evaluation(i, 0);
383 double GMLS_DivFree_VectorY = (dimension>1) ? output_vector_evaluation(i, 1) : 0;
384 double GMLS_DivFree_VectorZ = (dimension>2) ? output_vector_evaluation(i, 2) : 0;
387 double GMLS_Curl_DivFree_VectorX = output_curl_vector_evaluation(i, 0);
388 double GMLS_Curl_DivFree_VectorY = (dimension>2) ? output_curl_vector_evaluation(i, 1) : 0;
389 double GMLS_Curl_DivFree_VectorZ = (dimension>2) ? output_curl_vector_evaluation(i, 2) : 0;
392 double GMLS_CurlCurl_DivFree_VectorX = output_curlcurl_vector_evaluation(i, 0);
393 double GMLS_CurlCurl_DivFree_VectorY = (dimension>1) ? output_curlcurl_vector_evaluation(i, 1) : 0;
394 double GMLS_CurlCurl_DivFree_VectorZ = (dimension>2) ? output_curlcurl_vector_evaluation(i, 2) : 0;
397 double GMLS_Gradient_DivFree_VectorXX = output_gradient_vector_evaluation(i, 0);
398 double GMLS_Gradient_DivFree_VectorXY = output_gradient_vector_evaluation(i, 1);
399 double GMLS_Gradient_DivFree_VectorXZ = (dimension==3) ? output_gradient_vector_evaluation(i, 2) : 0.0;
400 double GMLS_Gradient_DivFree_VectorYX = (dimension==3) ? output_gradient_vector_evaluation(i, 3) : output_gradient_vector_evaluation(i, 2);
401 double GMLS_Gradient_DivFree_VectorYY = (dimension==3) ? output_gradient_vector_evaluation(i, 4) : output_gradient_vector_evaluation(i, 3);
402 double GMLS_Gradient_DivFree_VectorYZ = (dimension==3) ? output_gradient_vector_evaluation(i, 5) : 0.0;
403 double GMLS_Gradient_DivFree_VectorZX = (dimension==3) ? output_gradient_vector_evaluation(i, 6) : 0.0;
404 double GMLS_Gradient_DivFree_VectorZY = (dimension==3) ? output_gradient_vector_evaluation(i, 7) : 0.0;
405 double GMLS_Gradient_DivFree_VectorZZ = (dimension==3) ? output_gradient_vector_evaluation(i, 8) : 0.0;
408 double xval = target_coords(i,0);
409 double yval = (dimension>1) ? target_coords(i,1) : 0;
410 double zval = (dimension>2) ? target_coords(i,2) : 0;
413 double actual_vector[3] = {0, 0, 0};
425 double actual_curl_vector[3] = {0, 0, 0};
435 double actual_curlcurl_vector[3] = {0, 0, 0};
446 double actual_gradient_vector[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
448 for (
int axes = 0; axes < 9; ++axes)
452 for (
int axes = 0; axes < 4; ++axes)
457 if(std::abs(actual_vector[0] - GMLS_DivFree_VectorX) > failure_tolerance) {
459 std::cout << i <<
" Failed VectorX by: " << std::abs(actual_vector[0] - GMLS_DivFree_VectorX) << std::endl;
461 if(std::abs(actual_vector[1] - GMLS_DivFree_VectorY) > failure_tolerance) {
463 std::cout << i <<
" Failed VectorY by: " << std::abs(actual_vector[1] - GMLS_DivFree_VectorY) << std::endl;
467 if(std::abs(actual_vector[2] - GMLS_DivFree_VectorZ) > failure_tolerance) {
469 std::cout << i <<
" Failed VectorZ by: " << std::abs(actual_vector[2] - GMLS_DivFree_VectorZ) << std::endl;
476 if(std::abs(actual_curl_vector[0] - GMLS_Curl_DivFree_VectorX) > failure_tolerance) {
478 std::cout << i <<
" Failed curl VectorX by: " << std::abs(actual_curl_vector[2] - GMLS_Curl_DivFree_VectorX) << std::endl;
480 }
else if (dimension>2) {
481 if(std::abs(actual_curl_vector[0] - GMLS_Curl_DivFree_VectorX) > failure_tolerance) {
483 std::cout << i <<
" Failed curl VectorX by: " << std::abs(actual_curl_vector[0] - GMLS_Curl_DivFree_VectorX) << std::endl;
485 if(std::abs(actual_curl_vector[1] - GMLS_Curl_DivFree_VectorY) > failure_tolerance) {
487 std::cout << i <<
" Failed curl VectorY by: " << std::abs(actual_curl_vector[1] - GMLS_Curl_DivFree_VectorY) << std::endl;
489 if(std::abs(actual_curl_vector[2] - GMLS_Curl_DivFree_VectorZ) > failure_tolerance) {
491 std::cout << i <<
" Failed curl VectorZ by: " << std::abs(actual_curl_vector[2] - GMLS_Curl_DivFree_VectorZ) << std::endl;
496 if(std::abs(actual_curlcurl_vector[0] - GMLS_CurlCurl_DivFree_VectorX) > failure_tolerance) {
498 std::cout << i <<
" Failed curl curl VectorX by: " << std::abs(actual_curlcurl_vector[0] - GMLS_CurlCurl_DivFree_VectorX) << std::endl;
501 if(std::abs(actual_curlcurl_vector[1] - GMLS_CurlCurl_DivFree_VectorY) > failure_tolerance) {
503 std::cout << i <<
" Failed curl curl VectorY by: " << std::abs(actual_curlcurl_vector[1] - GMLS_CurlCurl_DivFree_VectorY) << std::endl;
507 if(std::abs(actual_curlcurl_vector[2] - GMLS_CurlCurl_DivFree_VectorZ) > failure_tolerance) {
509 std::cout << i <<
" Failed curl curl VectorZ by: " << std::abs(actual_curlcurl_vector[2] - GMLS_CurlCurl_DivFree_VectorZ) << std::endl;
515 if (std::abs(actual_gradient_vector[0] - GMLS_Gradient_DivFree_VectorXX) > failure_tolerance) {
517 std::cout << i <<
" Failed gradient_x VectorX by: " << std::abs(actual_gradient_vector[0] - GMLS_Gradient_DivFree_VectorXX) << std::endl;
519 if (std::abs(actual_gradient_vector[1] - GMLS_Gradient_DivFree_VectorXY) > failure_tolerance) {
521 std::cout << i <<
" Failed gradient_y VectorX by: " << std::abs(actual_gradient_vector[1] - GMLS_Gradient_DivFree_VectorXY) << std::endl;
523 if (std::abs(actual_gradient_vector[2] - GMLS_Gradient_DivFree_VectorXZ) > failure_tolerance) {
525 std::cout << i <<
" Failed gradient_z VectorX by: " << std::abs(actual_gradient_vector[2] - GMLS_Gradient_DivFree_VectorXZ) << std::endl;
528 if (std::abs(actual_gradient_vector[3] - GMLS_Gradient_DivFree_VectorYX) > failure_tolerance) {
530 std::cout << i <<
" Failed gradient_x VectorY by: " << std::abs(actual_gradient_vector[3] - GMLS_Gradient_DivFree_VectorYX) << std::endl;
532 if (std::abs(actual_gradient_vector[4] - GMLS_Gradient_DivFree_VectorYY) > failure_tolerance) {
534 std::cout << i <<
" Failed gradient_y VectorY by: " << std::abs(actual_gradient_vector[4] - GMLS_Gradient_DivFree_VectorYY) << std::endl;
536 if (std::abs(actual_gradient_vector[5] - GMLS_Gradient_DivFree_VectorYZ) > failure_tolerance) {
538 std::cout << i <<
" Failed gradient_z VectorY by: " << std::abs(actual_gradient_vector[5] - GMLS_Gradient_DivFree_VectorYZ) << std::endl;
541 if (std::abs(actual_gradient_vector[6] - GMLS_Gradient_DivFree_VectorZX) > failure_tolerance) {
543 std::cout << i <<
" Failed gradient_x VectorZ by: " << std::abs(actual_gradient_vector[6] - GMLS_Gradient_DivFree_VectorZX) << std::endl;
545 if (std::abs(actual_gradient_vector[7] - GMLS_Gradient_DivFree_VectorZY) > failure_tolerance) {
547 std::cout << i <<
" Failed gradient_y VectorZ by: " << std::abs(actual_gradient_vector[7] - GMLS_Gradient_DivFree_VectorZY) << std::endl;
549 if (std::abs(actual_gradient_vector[8] - GMLS_Gradient_DivFree_VectorZZ) > failure_tolerance) {
551 std::cout << i <<
" Failed gradient_z VectorZ by: " << std::abs(actual_gradient_vector[8] - GMLS_Gradient_DivFree_VectorZZ) << std::endl;
556 if (std::abs(actual_gradient_vector[0] - GMLS_Gradient_DivFree_VectorXX) > failure_tolerance) {
558 std::cout << i <<
" Failed gradient_x VectorX by: " << std::abs(actual_gradient_vector[0] - GMLS_Gradient_DivFree_VectorXX) << std::endl;
560 if (std::abs(actual_gradient_vector[1] - GMLS_Gradient_DivFree_VectorXY) > failure_tolerance) {
562 std::cout << i <<
" Failed gradient_y VectorX by: " << std::abs(actual_gradient_vector[1] - GMLS_Gradient_DivFree_VectorXY) << std::endl;
565 if (std::abs(actual_gradient_vector[2] - GMLS_Gradient_DivFree_VectorYX) > failure_tolerance) {
567 std::cout << i <<
" Failed gradient_x VectorY by: " << std::abs(actual_gradient_vector[2] - GMLS_Gradient_DivFree_VectorYX) << std::endl;
569 if (std::abs(actual_gradient_vector[3] - GMLS_Gradient_DivFree_VectorYY) > failure_tolerance) {
571 std::cout << i <<
" Failed gradient_y VectorY by: " << (std::abs(actual_gradient_vector[3] - GMLS_Gradient_DivFree_VectorYY) > failure_tolerance) << std::endl;
579 Kokkos::Profiling::popRegion();
588 #ifdef COMPADRE_USE_MPI
594 fprintf(stdout,
"Passed test \n");
597 fprintf(stdout,
"Failed test \n");
Divergence-free vector polynomial basis.
KOKKOS_INLINE_FUNCTION double divfreeTestSolution_span_basis(double x, double y, double z, int component, int dimension, int exact_order)
Point evaluation of the curl of a curl of a vector (results in a vector)
Point evaluation of the curl of a vector (results in a vector)
Lightweight Evaluator Helper This class is a lightweight wrapper for extracting and applying all rele...
Point evaluation of a vector (reconstructs entire vector at once, requiring a ReconstructionSpace hav...
PointCloudSearch< view_type > CreatePointCloudSearch(view_type src_view, const local_index_type dimensions=-1, const local_index_type max_leaf=-1)
CreatePointCloudSearch allows for the construction of an object of type PointCloudSearch with templat...
KOKKOS_INLINE_FUNCTION double curldivfreeTestSolution_span_basis(double x, double y, double z, int component, int dimension, int exact_order)
KOKKOS_INLINE_FUNCTION double curlcurldivfreeTestSolution_single_polynomial(double x, double y, double z, int component, int dimension)
int main(int argc, char *args[])
[Parse Command Line Arguments]
static KOKKOS_INLINE_FUNCTION int getNP(const int m, const int dimension=3, const ReconstructionSpace r_space=ReconstructionSpace::ScalarTaylorPolynomial)
Returns size of the basis for a given polynomial order and dimension General to dimension 1...
KOKKOS_INLINE_FUNCTION double divfreeTestSolution_single_polynomial(double x, double y, double z, int component, int dimension)
Generalized Moving Least Squares (GMLS)
Kokkos::View< output_data_type, output_array_layout, output_memory_space > applyAlphasToDataAllComponentsAllTargetSites(view_type_input_data sampling_data, TargetOperation lro, const SamplingFunctional sro_in=PointSample, bool scalar_as_vector_if_needed=true, const int evaluation_site_local_index=0) const
Transformation of data under GMLS.
KOKKOS_INLINE_FUNCTION double gradientdivfreeTestSolution_span_basis(double x, double y, double z, int input_component, int output_component, int dimension, int exact_order)
void setProblemData(view_type_1 neighbor_lists, view_type_2 source_coordinates, view_type_3 target_coordinates, view_type_4 epsilons)
Sets basic problem data (neighbor lists, source coordinates, and target coordinates) ...
Point evaluation of the gradient of a vector (results in a matrix, NOT CURRENTLY IMPLEMENTED) ...
constexpr SamplingFunctional VectorPointSample
Point evaluations of the entire vector source function.