Belos  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
BlockGmres/BlockGmresPolyEpetraExFile.cpp

The GMRES polynomial solver manager can perform two types of linear solves. First the solver runs block GMRES, storing the resulting coefficients (or roots), which can be used to form a matrix polynomial. It then can reuse this polynomial as either a surrogate operator, or as a preconditioner for an outer solver. By applying the GMRES polynomial as an operator or preconditioner, one avoids the cost of the inner products and norms in GMRES, thus reducing communication costs.

//@HEADER
// ************************************************************************
//
// Belos: Block Linear Solvers Package
// Copyright 2004 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
//
// This driver reads a problem from a file, which can be in Harwell-Boeing (*.hb),
// Matrix Market (*.mtx), or triplet format (*.triU, *.triS). The right-hand side
// from the problem, if it exists, will be used instead of multiple
// random right-hand-sides. The initial guesses are all set to zero.
//
// NOTE: No preconditioner is used in this example.
//
#include "BelosEpetraAdapter.hpp"
#include "EpetraExt_readEpetraLinearSystem.h"
#include "Epetra_Map.h"
#ifdef EPETRA_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_CrsMatrix.h"
#include "Ifpack.h"
#include "Teuchos_StandardCatchMacros.hpp"
int main(int argc, char *argv[]) {
//
int MyPID = 0;
#ifdef EPETRA_MPI
// Initialize MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
MyPID = Comm.MyPID();
#else
#endif
//
typedef double ST;
typedef SCT::magnitudeType MT;
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;
using Teuchos::RCP;
using Teuchos::rcp;
bool verbose = false;
bool success = true;
try {
bool proc_verbose = false;
bool debug = false;
bool userandomrhs = true;
int frequency = -1; // frequency of status test output.
int blocksize = 1; // blocksize
int numrhs = 1; // number of right-hand sides to solve for
int maxiters = -1; // maximum number of iterations allowed per linear system
int maxdegree = 25; // maximum degree of polynomial
int maxsubspace = 50; // maximum number of blocks the solver can use for the subspace
int maxrestarts = 15; // number of restarts allowed
std::string outersolver("Block Gmres");
std::string polytype("Arnoldi");
std::string filename("orsirr1.hb");
std::string precond("right");
MT tol = 1.0e-5; // relative residual tolerance
MT polytol = tol/10; // relative residual tolerance for polynomial construction
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("debug","nondebug",&debug,"Print debugging information from solver.");
cmdp.setOption("use-random-rhs","use-rhs",&userandomrhs,"Use linear system RHS or random RHS to generate polynomial.");
cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
cmdp.setOption("filename",&filename,"Filename for test matrix. Acceptable file extensions: *.hb,*.mtx,*.triU,*.triS");
cmdp.setOption("outersolver",&outersolver,"Name of outer solver to be used with GMRES poly");
cmdp.setOption("poly-type",&polytype,"Name of the polynomial to be generated.");
cmdp.setOption("precond",&precond,"Preconditioning type (none, left, right).");
cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
cmdp.setOption("poly-tol",&polytol,"Relative residual tolerance used to construct the GMRES polynomial.");
cmdp.setOption("num-rhs",&numrhs,"Number of right-hand sides to be solved for.");
cmdp.setOption("block-size",&blocksize,"Block size used by GMRES.");
cmdp.setOption("max-iters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
cmdp.setOption("max-degree",&maxdegree,"Maximum degree of the GMRES polynomial.");
cmdp.setOption("max-subspace",&maxsubspace,"Maximum number of blocks the solver can use for the subspace.");
cmdp.setOption("max-restarts",&maxrestarts,"Maximum number of restarts allowed for GMRES solver.");
return -1;
}
if (!verbose)
frequency = -1; // reset frequency if test is not verbose
//
// Get the problem
//
RCP<Epetra_Map> Map;
RCP<Epetra_CrsMatrix> A;
RCP<Epetra_MultiVector> B, X;
RCP<Epetra_Vector> vecB, vecX;
EpetraExt::readEpetraLinearSystem(filename, Comm, &A, &Map, &vecX, &vecB);
A->OptimizeStorage();
proc_verbose = verbose && (MyPID==0); /* Only print on the zero processor */
// Check to see if the number of right-hand sides is the same as requested.
if (numrhs>1) {
X = rcp( new Epetra_MultiVector( *Map, numrhs ) );
B = rcp( new Epetra_MultiVector( *Map, numrhs ) );
X->Random();
OPT::Apply( *A, *X, *B );
X->PutScalar( 0.0 );
}
else {
X = Teuchos::rcp_implicit_cast<Epetra_MultiVector>(vecX);
B = Teuchos::rcp_implicit_cast<Epetra_MultiVector>(vecB);
}
//
// ************Construct preconditioner*************
//
RCP<Belos::EpetraPrecOp> belosPrec;
if (precond != "none") {
ParameterList ifpackList;
// allocates an IFPACK factory. No data is associated
// to this object (only method Create()).
Ifpack Factory;
// create the preconditioner. For valid PrecType values,
// please check the documentation
std::string PrecType = "ILU"; // incomplete LU
int OverlapLevel = 1; // must be >= 0. If Comm.NumProc() == 1,
// it is ignored.
RCP<Ifpack_Preconditioner> Prec = Teuchos::rcp( Factory.Create(PrecType, &*A, OverlapLevel) );
assert(Prec != Teuchos::null);
// specify parameters for ILU
ifpackList.set("fact: level-of-fill", 1);
// the combine mode is on the following:
// "Add", "Zero", "Insert", "InsertAdd", "Average", "AbsMax"
// Their meaning is as defined in file Epetra_CombineMode.h
ifpackList.set("schwarz: combine mode", "Add");
// sets the parameters
IFPACK_CHK_ERR(Prec->SetParameters(ifpackList));
// initialize the preconditioner. At this point the matrix must
// have been FillComplete()'d, but actual values are ignored.
IFPACK_CHK_ERR(Prec->Initialize());
// Builds the preconditioners, by looking for the values of
// the matrix.
IFPACK_CHK_ERR(Prec->Compute());
// Create the Belos preconditioned operator from the Ifpack preconditioner.
// NOTE: This is necessary because Belos expects an operator to apply the
// preconditioner with Apply() NOT ApplyInverse().
belosPrec = rcp( new Belos::EpetraPrecOp( Prec ) );
}
//
// ********Other information used by block solver***********
// *****************(can be user specified)******************
//
const int NumGlobalElements = B->GlobalLength();
if (maxiters == -1)
maxiters = NumGlobalElements/blocksize - 1; // maximum number of iterations to run
//
ParameterList belosList;
belosList.set( "Num Blocks", maxsubspace); // Maximum number of blocks in Krylov factorization
belosList.set( "Block Size", blocksize ); // Blocksize to be used by iterative solver
belosList.set( "Maximum Iterations", maxiters ); // Maximum number of iterations allowed
belosList.set( "Maximum Restarts", maxrestarts ); // Maximum number of restarts allowed
belosList.set( "Convergence Tolerance", tol ); // Relative convergence tolerance requested
int verbosity = Belos::Errors + Belos::Warnings;
if (verbose) {
if (frequency > 0)
belosList.set( "Output Frequency", frequency );
}
if (debug) {
verbosity += Belos::Debug;
}
belosList.set( "Verbosity", verbosity );
ParameterList polyList;
polyList.set( "Polynomial Type", polytype ); // Type of polynomial to be generated
polyList.set( "Maximum Degree", maxdegree ); // Maximum degree of the GMRES polynomial
polyList.set( "Polynomial Tolerance", polytol ); // Polynomial convergence tolerance requested
polyList.set( "Verbosity", verbosity ); // Verbosity for polynomial construction
polyList.set( "Random RHS", userandomrhs ); // Use RHS from linear system or random vector
if ( outersolver != "" ) {
polyList.set( "Outer Solver", outersolver );
polyList.set( "Outer Solver Params", belosList );
}
//
// Construct an unpreconditioned linear problem instance.
//
problem.setInitResVec( B );
if (precond == "left") {
problem.setLeftPrec( belosPrec );
}
if (precond == "right") {
problem.setRightPrec( belosPrec );
}
bool set = problem.setProblem();
if (set == false) {
if (proc_verbose)
std::cout << std::endl << "ERROR: Belos::LinearProblem failed to set up correctly!" << std::endl;
return -1;
}
//
// *******************************************************************
// *************Start the block Gmres iteration*************************
// *******************************************************************
//
// Create an iterative solver manager.
RCP< Belos::SolverManager<double,MV,OP> > newSolver
= rcp( new Belos::GmresPolySolMgr<double,MV,OP>(rcp(&problem,false), rcp(&polyList,false)));
//
// **********Print out information about problem*******************
//
if (proc_verbose) {
std::cout << std::endl << std::endl;
std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
std::cout << "Number of right-hand sides: " << numrhs << std::endl;
std::cout << "Block size used by solver: " << blocksize << std::endl;
std::cout << "Max number of restarts allowed: " << maxrestarts << std::endl;
std::cout << "Max number of Gmres iterations per restart cycle: " << maxiters << std::endl;
std::cout << "Relative residual tolerance: " << tol << std::endl;
std::cout << std::endl;
}
//
// Perform solve
//
Belos::ReturnType ret = newSolver->solve();
//
// Compute actual residuals.
//
bool badRes = false;
std::vector<double> actual_resids( numrhs );
std::vector<double> rhs_norm( numrhs );
Epetra_MultiVector resid(*Map, numrhs);
OPT::Apply( *A, *X, resid );
MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
MVT::MvNorm( resid, actual_resids );
MVT::MvNorm( *B, rhs_norm );
if (proc_verbose) {
std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
for ( int i=0; i<numrhs; i++) {
double actRes = actual_resids[i]/rhs_norm[i];
std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
if (actRes > tol) badRes = true;
}
}
if (ret!=Belos::Converged || badRes) {
success = false;
if (proc_verbose)
std::cout << std::endl << "ERROR: Belos did not converge!" << std::endl;
} else {
success = true;
if (proc_verbose)
std::cout << std::endl << "SUCCESS: Belos converged!" << std::endl;
}
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);
#ifdef EPETRA_MPI
MPI_Finalize();
#endif
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}

Generated on Thu Nov 21 2024 09:28:19 for Belos by doxygen 1.8.5