Anasazi  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
BlockKrylovSchur/BlockKrylovSchurEpetraEx.cpp

Use Anasazi::BlockKrylovSchurSolMgr to solve a standard (not generalized) eigenvalue problem, using Epetra data structures.

// @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright 2004 Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
// This example computes the specified eigenvalues of the discretized 2D Convection-Diffusion
// equation using the block Krylov-Schur method. This discretized operator is constructed as an
// Epetra matrix, then passed into the Anasazi::EpetraOp to be used in the construction of the
// Krylov decomposition. The specifics of the block Krylov-Schur method can be set by the user.
#include "Epetra_CrsMatrix.h"
#include "Teuchos_StandardCatchMacros.hpp"
#include "Teuchos_Assert.hpp"
#ifdef EPETRA_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
#include "Epetra_Map.h"
int main(int argc, char *argv[]) {
using std::cout;
#ifdef EPETRA_MPI
// Initialize MPI
MPI_Init(&argc,&argv);
#endif
bool success = false;
bool verbose = true;
try {
#ifdef EPETRA_MPI
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
#endif
bool boolret;
int MyPID = Comm.MyPID();
bool debug = false;
bool dynXtraNev = false;
std::string which("SM");
int nx = 10; // Discretization points in any one direction.
int nev = 4;
int blockSize = 1;
int numBlocks = 20;
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("debug","nodebug",&debug,"Print debugging information.");
cmdp.setOption("sort",&which,"Targetted eigenvalues (SM,LM,SR,LR,SI,or LI).");
cmdp.setOption("nx",&nx,"Number of discretization points in each direction; n=nx*nx.");
cmdp.setOption("nev",&nev,"Number of eigenvalues to compute.");
cmdp.setOption("blocksize",&blockSize,"Block Size.");
cmdp.setOption("numblocks",&numBlocks,"Number of blocks for the Krylov-Schur form.");
cmdp.setOption("dynrestart","nodynrestart",&dynXtraNev,"Use dynamic restart boundary to accelerate convergence.");
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return -1;
}
typedef double ScalarType;
typedef SCT::magnitudeType MagnitudeType;
typedef Epetra_MultiVector MV;
typedef Epetra_Operator OP;
// Dimension of the matrix
int NumGlobalElements = nx*nx; // Size of matrix nx*nx
// Construct a Map that puts approximately the same number of
// equations on each processor.
Epetra_Map Map(NumGlobalElements, 0, Comm);
// Get update list and number of local equations from newly created Map.
int NumMyElements = Map.NumMyElements();
std::vector<int> MyGlobalElements(NumMyElements);
Map.MyGlobalElements(&MyGlobalElements[0]);
// Create an integer vector NumNz that is used to build the Petra Matrix.
// NumNz[i] is the Number of OFF-DIAGONAL term for the ith global equation
// on this processor
std::vector<int> NumNz(NumMyElements);
/* We are building a matrix of block structure:
| T -I |
|-I T -I |
| -I T |
| ... -I|
| -I T|
where each block is dimension nx by nx and the matrix is on the order of
nx*nx. The block T is a tridiagonal matrix.
*/
for (int i=0; i<NumMyElements; i++) {
if (MyGlobalElements[i] == 0 || MyGlobalElements[i] == NumGlobalElements-1 ||
MyGlobalElements[i] == nx-1 || MyGlobalElements[i] == nx*(nx-1) ) {
NumNz[i] = 3;
}
else if (MyGlobalElements[i] < nx || MyGlobalElements[i] > nx*(nx-1) ||
MyGlobalElements[i]%nx == 0 || (MyGlobalElements[i]+1)%nx == 0) {
NumNz[i] = 4;
}
else {
NumNz[i] = 5;
}
}
// Create an Epetra_Matrix
Teuchos::RCP<Epetra_CrsMatrix> A = Teuchos::rcp( new Epetra_CrsMatrix(Epetra_DataAccess::Copy, Map, &NumNz[0]) );
// Diffusion coefficient, can be set by user.
// When rho*h/2 <= 1, the discrete convection-diffusion operator has real eigenvalues.
// When rho*h/2 > 1, the operator has complex eigenvalues.
//double rho = 2*nx+1;
double rho = 0.0;
// Compute coefficients for discrete convection-diffution operator
const double one = 1.0;
std::vector<double> Values(4);
std::vector<int> Indices(4);
double h = one /(nx+1);
double h2 = h*h;
double c = 5.0e-01*rho/ h;
Values[0] = -one/h2 - c; Values[1] = -one/h2 + c; Values[2] = -one/h2; Values[3]= -one/h2;
double diag = 4.0 / h2;
int NumEntries, info;
for (int i=0; i<NumMyElements; i++)
{
if (MyGlobalElements[i]==0)
{
Indices[0] = 1;
Indices[1] = nx;
NumEntries = 2;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i] == nx*(nx-1))
{
Indices[0] = nx*(nx-1)+1;
Indices[1] = nx*(nx-2);
NumEntries = 2;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i] == nx-1)
{
Indices[0] = nx-2;
NumEntries = 1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
Indices[0] = 2*nx-1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i] == NumGlobalElements-1)
{
Indices[0] = NumGlobalElements-2;
NumEntries = 1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
Indices[0] = nx*(nx-1)-1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i] < nx)
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i] > nx*(nx-1))
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
NumEntries = 3;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if (MyGlobalElements[i]%nx == 0)
{
Indices[0] = MyGlobalElements[i]+1;
Indices[1] = MyGlobalElements[i]-nx;
Indices[2] = MyGlobalElements[i]+nx;
NumEntries = 3;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else if ((MyGlobalElements[i]+1)%nx == 0)
{
Indices[0] = MyGlobalElements[i]-nx;
Indices[1] = MyGlobalElements[i]+nx;
NumEntries = 2;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
Indices[0] = MyGlobalElements[i]-1;
NumEntries = 1;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
else
{
Indices[0] = MyGlobalElements[i]-1;
Indices[1] = MyGlobalElements[i]+1;
Indices[2] = MyGlobalElements[i]-nx;
Indices[3] = MyGlobalElements[i]+nx;
NumEntries = 4;
info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]);
TEUCHOS_ASSERT( info==0 );
}
// Put in the diagonal entry
info = A->InsertGlobalValues(MyGlobalElements[i], 1, &diag, &MyGlobalElements[i]);
TEUCHOS_ASSERT( info==0 );
}
// Finish up
info = A->FillComplete();
TEUCHOS_ASSERT( info==0 );
A->SetTracebackMode(1); // Shutdown Epetra Warning tracebacks
//************************************
// Start the block Arnoldi iteration
//***********************************
//
// Variables used for the Block Krylov Schur Method
//
int maxRestarts = 500;
//int stepSize = 5;
double tol = 1e-8;
// Create a sort manager to pass into the block Krylov-Schur solver manager
// --> Make sure the reference-counted pointer is of type Anasazi::SortManager<>
// --> The block Krylov-Schur solver manager uses Anasazi::BasicSort<> by default,
// so you can also pass in the parameter "Which", instead of a sort manager.
// Set verbosity level
if (verbose) {
}
if (debug) {
verbosity += Anasazi::Debug;
}
//
// Create parameter list to pass into solver manager
//
MyPL.set( "Verbosity", verbosity );
MyPL.set( "Sort Manager", MySort );
//MyPL.set( "Which", which );
MyPL.set( "Block Size", blockSize );
MyPL.set( "Num Blocks", numBlocks );
MyPL.set( "Maximum Restarts", maxRestarts );
//MyPL.set( "Step Size", stepSize );
MyPL.set( "Convergence Tolerance", tol );
MyPL.set("Dynamic Extra NEV",dynXtraNev);
// Create an Epetra_MultiVector for an initial vector to start the solver.
// Note: This needs to have the same number of columns as the blocksize.
ivec->Random();
// Create the eigenproblem.
// Inform the eigenproblem that the operator A is symmetric
MyProblem->setHermitian(rho==0.0);
// Set the number of eigenvalues requested
MyProblem->setNEV( nev );
// Inform the eigenproblem that you are finishing passing it information
boolret = MyProblem->setProblem();
if (boolret != true) {
if (verbose && MyPID == 0) {
std::cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << std::endl;
}
#ifdef HAVE_MPI
MPI_Finalize() ;
#endif
return -1;
}
// Initialize the Block Arnoldi solver
// Solve the problem to the specified tolerances or length
Anasazi::ReturnType returnCode = MySolverMgr.solve();
if (returnCode != Anasazi::Converged && MyPID==0 && verbose) {
std::cout << "Anasazi::EigensolverMgr::solve() returned unconverged." << std::endl;
}
// Get the Ritz values from the eigensolver
std::vector<Anasazi::Value<double> > ritzValues = MySolverMgr.getRitzValues();
// Output computed eigenvalues and their direct residuals
if (verbose && MyPID==0) {
int numritz = (int)ritzValues.size();
std::cout.setf(std::ios_base::right, std::ios_base::adjustfield);
std::cout<<std::endl<< "Computed Ritz Values"<< std::endl;
if (MyProblem->isHermitian()) {
std::cout<< std::setw(16) << "Real Part"
<< std::endl;
std::cout<<"-----------------------------------------------------------"<<std::endl;
for (int i=0; i<numritz; i++) {
std::cout<< std::setw(16) << ritzValues[i].realpart
<< std::endl;
}
std::cout<<"-----------------------------------------------------------"<<std::endl;
}
else {
std::cout<< std::setw(16) << "Real Part"
<< std::setw(16) << "Imag Part"
<< std::endl;
std::cout<<"-----------------------------------------------------------"<<std::endl;
for (int i=0; i<numritz; i++) {
std::cout<< std::setw(16) << ritzValues[i].realpart
<< std::setw(16) << ritzValues[i].imagpart
<< std::endl;
}
std::cout<<"-----------------------------------------------------------"<<std::endl;
}
}
// Get the eigenvalues and eigenvectors from the eigenproblem
Anasazi::Eigensolution<ScalarType,MV> sol = MyProblem->getSolution();
std::vector<Anasazi::Value<ScalarType> > evals = sol.Evals;
Teuchos::RCP<MV> evecs = sol.Evecs;
std::vector<int> index = sol.index;
int numev = sol.numVecs;
if (numev > 0) {
// Compute residuals.
std::vector<double> normA(numev);
if (MyProblem->isHermitian()) {
// Get storage
Epetra_MultiVector Aevecs(Map,numev);
B.putScalar(0.0);
for (int i=0; i<numev; i++) {B(i,i) = evals[i].realpart;}
// Compute A*evecs
OPT::Apply( *A, *evecs, Aevecs );
// Compute A*evecs - lambda*evecs and its norm
MVT::MvTimesMatAddMv( -1.0, *evecs, B, 1.0, Aevecs );
MVT::MvNorm( Aevecs, normA );
// Scale the norms by the eigenvalue
for (int i=0; i<numev; i++) {
normA[i] /= Teuchos::ScalarTraits<double>::magnitude( evals[i].realpart );
}
} else {
// The problem is non-Hermitian.
int i=0;
std::vector<int> curind(1);
std::vector<double> resnorm(1), tempnrm(1);
Teuchos::RCP<MV> tempAevec;
Teuchos::RCP<const MV> evecr, eveci;
Epetra_MultiVector Aevec(Map,numev);
// Compute A*evecs
OPT::Apply( *A, *evecs, Aevec );
while (i<numev) {
if (index[i]==0) {
// Get a view of the current eigenvector (evecr)
curind[0] = i;
evecr = MVT::CloneView( *evecs, curind );
// Get a copy of A*evecr
tempAevec = MVT::CloneCopy( Aevec, curind );
// Compute A*evecr - lambda*evecr
Breal(0,0) = evals[i].realpart;
MVT::MvTimesMatAddMv( -1.0, *evecr, Breal, 1.0, *tempAevec );
// Compute the norm of the residual and increment counter
MVT::MvNorm( *tempAevec, resnorm );
normA[i] = resnorm[0]/Teuchos::ScalarTraits<MagnitudeType>::magnitude( evals[i].realpart );
i++;
} else {
// Get a view of the real part of the eigenvector (evecr)
curind[0] = i;
evecr = MVT::CloneView( *evecs, curind );
// Get a copy of A*evecr
tempAevec = MVT::CloneCopy( Aevec, curind );
// Get a view of the imaginary part of the eigenvector (eveci)
curind[0] = i+1;
eveci = MVT::CloneView( *evecs, curind );
// Set the eigenvalue into Breal and Bimag
Breal(0,0) = evals[i].realpart;
Bimag(0,0) = evals[i].imagpart;
// Compute A*evecr - evecr*lambdar + eveci*lambdai
MVT::MvTimesMatAddMv( -1.0, *evecr, Breal, 1.0, *tempAevec );
MVT::MvTimesMatAddMv( 1.0, *eveci, Bimag, 1.0, *tempAevec );
MVT::MvNorm( *tempAevec, tempnrm );
// Get a copy of A*eveci
tempAevec = MVT::CloneCopy( Aevec, curind );
// Compute A*eveci - eveci*lambdar - evecr*lambdai
MVT::MvTimesMatAddMv( -1.0, *evecr, Bimag, 1.0, *tempAevec );
MVT::MvTimesMatAddMv( -1.0, *eveci, Breal, 1.0, *tempAevec );
MVT::MvNorm( *tempAevec, resnorm );
// Compute the norms and scale by magnitude of eigenvalue
normA[i] = lapack.LAPY2( tempnrm[0], resnorm[0] ) /
lapack.LAPY2( evals[i].realpart, evals[i].imagpart );
normA[i+1] = normA[i];
i=i+2;
}
}
}
// Output computed eigenvalues and their direct residuals
if (verbose && MyPID==0) {
std::cout.setf(std::ios_base::right, std::ios_base::adjustfield);
std::cout<<std::endl<< "Actual Residuals"<<std::endl;
if (MyProblem->isHermitian()) {
std::cout<< std::setw(16) << "Real Part"
<< std::setw(20) << "Direct Residual"<< std::endl;
std::cout<<"-----------------------------------------------------------"<<std::endl;
for (int i=0; i<numev; i++) {
std::cout<< std::setw(16) << evals[i].realpart
<< std::setw(20) << normA[i] << std::endl;
}
std::cout<<"-----------------------------------------------------------"<<std::endl;
}
else {
std::cout<< std::setw(16) << "Real Part"
<< std::setw(16) << "Imag Part"
<< std::setw(20) << "Direct Residual"<< std::endl;
std::cout<<"-----------------------------------------------------------"<<std::endl;
for (int i=0; i<numev; i++) {
std::cout<< std::setw(16) << evals[i].realpart
<< std::setw(16) << evals[i].imagpart
<< std::setw(20) << normA[i] << std::endl;
}
std::cout<<"-----------------------------------------------------------"<<std::endl;
}
}
}
success = true;
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);
#ifdef EPETRA_MPI
MPI_Finalize();
#endif
return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
}