Shows how to create an Amesos2 solver using the Amesos2::create() factory method interface, followed by solving a small linear system.
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_RCP.hpp>
#include <Teuchos_oblackholestream.hpp>
#include <Teuchos_Tuple.hpp>
#include <Teuchos_VerboseObject.hpp>
#include <Tpetra_Core.hpp>
#include <Tpetra_Map.hpp>
#include <Tpetra_MultiVector.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include "Amesos2.hpp"
#include "Amesos2_Version.hpp"
int main(int argc, char *argv[]) {
Tpetra::ScopeGuard tpetraScope(&argc,&argv);
typedef double Scalar;
typedef Tpetra::Map<>::local_ordinal_type LO;
typedef Tpetra::Map<>::global_ordinal_type GO;
typedef Tpetra::CrsMatrix<Scalar,LO,GO> MAT;
typedef Tpetra::MultiVector<Scalar,LO,GO> MV;
using Tpetra::global_size_t;
using Teuchos::tuple;
using Teuchos::RCP;
using Teuchos::rcp;
if( !Amesos2::query("SuperLU") ){
std::cerr << "SuperLU not enabled. Exiting..." << std::endl;
return EXIT_SUCCESS;
}
Teuchos::RCP<const Teuchos::Comm<int> > comm =
Tpetra::getDefaultComm();
size_t myRank = comm->getRank();
std::ostream &out = std::cout;
out << Amesos2::version() << std::endl << std::endl;
const size_t numVectors = 1;
global_size_t nrows = 6;
RCP<Tpetra::Map<LO,GO> > map
= rcp( new Tpetra::Map<LO,GO>(nrows,0,comm) );
RCP<MAT> A = rcp( new MAT(map,3) );
if( myRank == 0 ){
A->insertGlobalValues(0,tuple<GO>(0,2,4),tuple<Scalar>(7,-3,-1));
A->insertGlobalValues(1,tuple<GO>(0,1),tuple<Scalar>(2,8));
A->insertGlobalValues(2,tuple<GO>(2),tuple<Scalar>(1));
A->insertGlobalValues(3,tuple<GO>(0,3),tuple<Scalar>(-3,5));
A->insertGlobalValues(4,tuple<GO>(1,4),tuple<Scalar>(-1,4));
A->insertGlobalValues(5,tuple<GO>(3,5),tuple<Scalar>(-2,6));
}
A->fillComplete();
RCP<MV> X = rcp(new MV(map,numVectors));
X->randomize();
RCP<MV> B = rcp(new MV(map,numVectors));
int data[6] = {-7,18,3,17,18,28};
for( int i = 0; i < 6; ++i ){
if( B->getMap()->isNodeGlobalElement(i) ){
B->replaceGlobalValue(i,0,data[i]);
}
}
RCP<Amesos2::Solver<MAT,MV> > solver = Amesos2::create<MAT,MV>("Superlu", A, X, B);
solver->symbolicFactorization().numericFactorization().solve();
RCP<Teuchos::FancyOStream> fos = Teuchos::fancyOStream(Teuchos::rcpFromRef(out));
*fos << "Solution :" << std::endl;
X->describe(*fos,Teuchos::VERB_EXTREME);
*fos << std::endl;
return 0;
}