This example gives an example of how to re-solve a system after having changed it, either changing the matrix itself, or changing part of the RHS B.
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_RCP.hpp>
#include <Teuchos_GlobalMPISession.hpp>
#include <Teuchos_Tuple.hpp>
#include <Teuchos_VerboseObject.hpp>
#include <Teuchos_CommandLineProcessor.hpp>
#include <Tpetra_Core.hpp>
#include <Tpetra_Map.hpp>
#include <Tpetra_MultiVector.hpp>
#include <Tpetra_Vector.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include <Tpetra_Import.hpp>
#include <MatrixMarket_Tpetra.hpp>
#include "Amesos2.hpp"
#include "Amesos2_Version.hpp"
int main(int argc, char *argv[]) {
Tpetra::ScopeGuard tpetraScope(&argc,&argv);
typedef double Scalar;
typedef Teuchos::ScalarTraits<Scalar>::magnitudeType Magnitude;
typedef double Scalar;
typedef Tpetra::Map<>::local_ordinal_type LO;
typedef Tpetra::Map<>::global_ordinal_type GO;
typedef Tpetra::CrsMatrix<Scalar,LO,GO> MAT;
typedef Tpetra::MultiVector<Scalar,LO,GO> MV;
using Tpetra::global_size_t;
using Tpetra::Map;
using Tpetra::Import;
using Teuchos::tuple;
using Teuchos::RCP;
using Teuchos::rcp;
Teuchos::RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm();
int myRank = comm->getRank();
RCP<Teuchos::FancyOStream> fos = Teuchos::fancyOStream(Teuchos::rcpFromRef(std::cout));
bool printMatrix = false;
bool printSolution = false;
bool printTiming = false;
bool verbose = false;
std::string solver_name = "SuperLU";
std::string filename("arc130.mtx");
Teuchos::CommandLineProcessor cmdp(false,true);
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("filename",&filename,"Filename for Matrix-Market test matrix.");
cmdp.setOption("print-matrix","no-print-matrix",&printMatrix,"Print the full matrix after reading it.");
cmdp.setOption("print-solution","no-print-solution",&printSolution,"Print solution vector after solve.");
cmdp.setOption("print-timing","no-print-timing",&printTiming,"Print solver timing statistics");
cmdp.setOption("solver", &solver_name, "Which TPL solver library to use.");
if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
return -1;
}
if( myRank == 0 ) *fos << Amesos2::version() << std::endl << std::endl;
const size_t numVectors = 1;
RCP<MAT> A = Tpetra::MatrixMarket::Reader<MAT>::readSparseFile(filename,comm);
if( printMatrix ){
A->describe(*fos, Teuchos::VERB_EXTREME);
}
else if( verbose && myRank==0 ){
*fos << std::endl << A->description() << std::endl << std::endl;
}
RCP<const Map<LO,GO> > dmnmap = A->getDomainMap();
RCP<const Map<LO,GO> > rngmap = A->getRangeMap();
RCP<MV> X = rcp( new MV(dmnmap,numVectors) );
X->randomize();
RCP<MV> B = rcp(new MV(rngmap,numVectors));
B->putScalar(10);
RCP<Amesos2::Solver<MAT,MV> > solver;
try{
solver = Amesos2::create<MAT,MV>(solver_name, A, X, B);
} catch (std::invalid_argument e){
*fos << e.what() << std::endl;
return 0;
}
solver->symbolicFactorization().numericFactorization().solve();
if( printSolution ){
X->describe(*fos,Teuchos::VERB_EXTREME);
}
A->resumeFill();
A->replaceGlobalValues(Teuchos::as<GO>(A->getRowMap()->getMinGlobalIndex()),
tuple<GO>(A->getColMap()->getMinGlobalIndex()),
tuple<Scalar>(20));
A->fillComplete();
solver->numericFactorization().solve();
if( printSolution ){
X->describe(*fos,Teuchos::VERB_EXTREME);
}
B->randomize();
if( verbose ){
if( myRank == 0) *fos << "New RHS vector:" << std::endl;
B->describe(*fos,Teuchos::VERB_EXTREME);
}
solver->solve();
if( printSolution ){
X->describe(*fos,Teuchos::VERB_EXTREME);
}
if( printTiming ){
solver->printTiming(*fos);
}
return 0;
}