

 3

SAND2005-1668
Unlimited Release

Printed March 2005
Updated for Trilinos 9.0 February 2009

Epetra Performance Optimization Guide

Michael A. Heroux
Scalable Algorithms Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

Abstract

Epetra is a package of classes for the construction and use of serial and distributed parallel linear
algebra objects [1]. It is one of the base packages in Trilinos [2]. Many Trilinos solver packages
can use Epetra object to provide basic linear algebra computations. In these cases, the
performance of the solver is often determined primarily by the performance of the kernels in
Epetra. For this reason, it is often advantageous to make sure that Epetra kernels are performing
optimally. This document describes how to get the best performance from Epetra kernels. The
ideas presented here can make a significant difference in the performance of Epetra, sometimes a
dramatic difference.

 4

Acknowledgements: The author would like to thank the ASC and LDRD programs that have
funded this work.

 5

Table of Contents

1. Introduction ... 6

1.1 Practice Categories .. 6

1.2 Epetra Computational Classes .. 6

2. 3rd Party Libraries: BLAS and LAPACK ... 7

3. Epetra_MultiVector Data Layout ... 8

4. Epetra_CrsGraph Construction ... 8

5. Epetra_CrsMatrix Construction .. 10

6. Selecting the Right Sparse Matrix Class ... 11

7. Parallel Data Redistribution .. 13

8. General Practices .. 13

References ... 14

 6

1. Introduction

This document describes issues for the Epetra computational classes that have an impact on
performance. We present the topics class by class and indicate via the symbols presented in
Section 1.1 the typical impact of each recommended practice.

1.1 Practice Categories

Each practice falls into one of three categories:

Very Strongly Recommended - Practices necessary for Epetra to perform well.

Strongly Recommended - Practices that are definitely a good thing or that have
proved to be valuable.

Recommended - Practices that are probably a good idea.

1.2 Epetra Computational Classes

Epetra contains a base class called Epetra_CompObject. This is a small class, but the classes that
derive from it are exactly those which are the focus of this guide.

Figure 1: Epetra Computational Classes

VSR

SR

R

 7

2. 3rd Party Libraries: BLAS and LAPACK
The Basic Linear Algebra Subprograms (BLAS) [3, 4, 5] provide a de facto standard interface
for a variety of common dense linear algebra kernels such as vector updates and dot products,
matrix-vector multiplication and matrix-matrix multiplication. LAPACK [6] provides a very
large collection of linear equation solvers, eigenvalue/eigenvector solvers and much more, and is
built to get its performance from the BLAS. A number of high-performance implementation of
the BLAS exist. In fact, every major computer platform has at least one high-performance
BLAS implementation. These high-performance BLAS kernels can provide a speed-up of a
factor of ten or more for some important operations. In particular, Level-2 and Level-3 BLAS
[4, 5] can be much faster. Two versions that are commonly used are ATLAS [7] and the GOTO
[8] BLAS.

A number of Epetra classes use BLAS and LAPACK to perform key calculations. Figure 2
shows the Epetra classes that depend on BLAS via the Epetra_BLAS class. Epetra_BLAS is a
simple wrapper class that provides portable interfaces to the BLAS Fortran interfaces. It is
convenient to use because calling FORTRAN from C++ varies from platform to platform, and
Epetra_BLAS handles the details of this issue.

Figure 2: Epetra classes affected by BLAS performance

• 2.1 Link to high-performance BLAS for Epetra_MultiVector, Epetra_VbrMatrix
and Epetra_SerialDense performance: Programs using Epetra should link to a high-
performance BLAS library if

o Epetra_MultiVector objects are used for block vector updates and block dot
products (via the Multiply() method in the Epetra_MultiVector class) or

o Epetra_VbrMatrix objects are being used. These matrix objects rely on BLAS
kernels for performing matrix-vector and matrix-multivector multiplication.

VSR

 8

o Any of the Epetra_SerialDense classes are used. High-performance BLAS are
critical to the performance of these classes.

3. Epetra_MultiVector Data Layout
An Epetra_MultiVector object is a collection of dense vectors. Each vector in a multivector is a
contiguous array of double-precision numbers. Generally these arrays are managed by the
Epetra_MultiVector object via an array of pointers. However, whenever possible,
Epetra_MultiVectors are created such that the arrays of double-precision numbers are
contiguous, such that the last element of one array is next to the first element of the next array.
Such an arrangement of the arrays is referred to as strided because the distance from the ith
element of one array to the ith element of the next array is determined by a fixed length. This
type of storage association is commonly used because it is exactly how FORTRAN stores two-
dimensional arrays. As a result, BLAS kernels assume this type of layout for matrices.
Additionally, there is an essential performance advantage when performing matrix computations
using strided arrays.

3.1 Create Epetra_MultiVector objects with strided storage of vectors: Epetra kernels will
tend to perform much better if the underlying vectors have a strided storage associated.
Although Epetra_MultiVectors support non-strided storage, we recommend it be avoided when
possible. In particular, use strided storage if:

o Epetra_MultiVector objects are used for block vector updates and block dot
products (via the Multiply() method in the Epetra_MultiVector class) or

o Epetra_MultiVectors are being used with Epetra_CrsMatrix or Epetra_VbrMatrix
object for sparse matrix-vector multiplication or sparse triangular solves. In these
instances, the performance of kernels can be up to twice as fast if the multivector
has strided storage.

4. Epetra_CrsGraph Construction
An Epetra_CrsGraph object contains the structural information (the non-zero pattern) for
Epetra_CrsMatrix and Epetra_VbrMatrix objects. An Epetra_CrsGraph can be constructed
explicitly prior to constructing a matrix, and then passed in to the matrix constructor.
Alternatively, if a matrix is constructed without passing in an existing Epetra_CrsGraph, the
Epetra_CrsGraph will be constructed “on-the-fly”.

Epetra_CrsGraph objects are constructed in a three-step process:

1. Instantiate the Epetra_CrsGraph object.
2. Insert graph indices.

VSR

 9

3. Call FillComplete() to process the graph data for efficient computation and
communication.

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method.
However, Step 2 can be accomplished in a number of ways. Indices can be inserted row-by-
row, index-by-index or any combination of these two approaches. Indices can be inserted
redundantly if the user does not want to track which indices are already in the graph and
indices can be removed. Although this flexibility is convenient, especially in prototyping
stages of development, it does introduce overhead in memory and time costs. Therefore,
Epetra_CrsGraph objects can be constructed in more restrictive modes that require more
information and attention from the user, but in return the user can significantly reduce
memory and time costs.

4.1 Construct Epetra_CrsGraph objects first: When constructing multiple
Epetra_CrsMatrix or Epetra_VbrMatrix objects, much of the overhead in sparse matrix
construction is related solely to the graph structure of the matrix. By pre-constructing the
Epetra_CrsGraph object, this expense is incurred only once and then amortized over multiple
matrix constructions. Note: Even when constructing a single matrix, it is often the case that
matrix construction is done within a nonlinear iteration or a time-stepping iteration. In both
of these cases, it is best to construct the Epetra_CrsGraph object one time and then reuse it.

4.2 When constructing Epetra_CrsGraph objects, carefully manage the nonzero profile
and set StaticProfile to ‘true’ : Although it is very convenient to use the flexible insertion
capabilities of Epetra_CrsGraph, the performance and memory cost can be substantial.
StaticProfile is an optional argument to the Epetra_CrsGraph constructors that forces the
constructor to pre-allocate all storage for the graph, using the argument NumIndicesPerRow
as a strict upper limit on the number of indices that will be inserted.

4.3 After calling FillComplete(), call OptimizeStorage() : (Note: With Trilinos 8.0 and
later, OptimizeStorage() is called automatically.) The OptimizeStorage() method frees
memory that is used only when submitting data to the object. Also, the storage that remains
is packed for better cache memory performance due to better spatial locality. If StaticProfile
is true, the packing of data is fast and cheap, if needed at all1. If StaticProfile is false, then
the graph data is not contiguously stored, so we must allocate contiguous space for all
entries, copy data from the existing arrays, and then delete the old arrays. This can be a
substantial overhead in memory costs and could even double the high-water memory mark.
However, the performance improvement for matrix operations can be 20% to a full doubling
of performance.

4.4 Use Epetra_FECrsMatrix if you have many repeated indices. Then extract the
associated Epetra_CrsGraph for subsequent use: Although there is no
Epetra_FECrsGraph class (something that we may introduce in the future), it is typically best
to use the Epetra_FECrsMatrix class to construct matrices when you have many repeated
indices. This is typically the case when forming global stiffness matrices from local element

1 If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need
to move any data, but it is not a big performance hit if the profile is somewhat larger.

VSR

VSR

VSR

VSR

 10

stiffness matrices in a finite element assembly loop. Note: Even though there is no
Epetra_FECrsGraph class, once an Epetra_FECrsMatrix has been constructed, call it
myFEMatrix, there is an Epetra_CrsGraph that can be accessed via myFEMatrix.Graph()
and used to construct further matrices that have the same pattern as myFEMatrix.

4.5 When inserting indices into Epetra_CrsGraph objects, avoid large numbers of
repeated indices: To reduce time costs, indices that are inserted into a row are not checked
for redundancy at the time they are inserted. Instead, when FillComplete() is called, indices
are sorted and then redundant indices are removed. Because of this approach, repeated
indices increase the memory used by a given row, at least until FillComplete() is called.

4.6 Submit large numbers of graph indices at once: When inserting indices, submit many
entries at once if possible. Ideally, it is best to submit all indices for a given row at once.

5. Epetra_CrsMatrix Construction
An Epetra_CrsMatrix object stores a sparse matrix in a row-biased data structure (although
column support is implicitly available because transpose operations are also supported). An
Epetra_CrsMatrix can be constructed using a previously constructed Epetra_CrsGraph object
or from scratch, in which case the graph will be constructed “on the fly”. Matrix entries can
be inserted, summed-into or replaced one-at-a-time or as row fragments.

Much like Epetra_CrsGraph objects, Epetra_CrsMatrix objects are constructed in a three-
step process:

1. Instantiate the Epetra_CrsMatrix object.
2. Submit matrix values and corresponding column indices via:

a. Insertion: New values that have no entry.
b. Sum-into: Values that already exist.
c. Replacement: Replace an existing value with a new one.

3. Call FillComplete() to process the matrix for efficient computation and
communication.

Step 1 involves a single call to the constructor and Step 3 to a FillComplete() method.
However, Step 2 can be accomplished in a number of ways. Matrix entries can be submitted
row-by-row, index-by-index or any combination of these two approaches. Although this
flexibility is convenient, especially in prototyping stages of development, it does introduce
overhead in memory and time costs. Therefore, Epetra_CrsMatrix objects can be constructed
in more restrictive modes that require more information and attention from the user, but in
return the user can significantly reduce memory and time costs.

5.1 When constructing Epetra_CrsMatrix objects, carefully manage the nonzero profile
and set StaticProfile to ‘true’ : As is true with Epetra_CrsGraph objects, it is very

VSR

SR

SR

 11

convenient to use the flexible insertion capabilities of Epetra_CrsMatrix. However, the
performance and memory cost of this flexibility can be substantial. StaticProfile is an
optional argument to the Epetra_CrsMatrix constructors that forces the constructor to pre-
allocate all storage for the matrix entries (and the Epetra_CrsGraph, if it is being constructed
on the fly), using the argument NumIndicesPerRow as a strict upper limit on the number of
matrix entries that will be inserted. Note: StaticProfile is false by default.

5.2 After calling FillComplete(), call OptimizeStorage() : (Note: With Trilinos 8.0 and
later, OptimizeStorage() is called automatically.) As is true with Epetra_CrsGraph objects,
the OptimizeStorage() method frees memory that is used only when submitting data to the
object. Also, the storage that remains is packed for better cache memory performance due to
better spatial locality. If StaticProfile is true, the packing of data is fast and cheap, if needed
at all2. If StaticProfile is false, then the matrix data is not contiguously stored, so we must
allocate contiguous space for all entries, copy data from the existing arrays, and then delete
the old arrays. This can be a substantial overhead in memory costs and could even double
the high-water memory mark. However, the performance improvement for matrix operations
can be 20% to a full doubling of performance.

5.3 Submit large numbers of matrix entries at once: When submitting entries via
insertion, sum-into or replacement, submit many entries at once if possible. Ideally, it is best
to submit all entries for a given row at once.

Also see Practices: 3.1, 4.1, and 4.3.

6. Selecting the Right Sparse Matrix Class
Epetra provides a base matrix class called Epetra_RowMatrix. Epetra_RowMatrix is a pure
virtual class that provides an interface to sparse matrices, allowing access to matrix
coefficients, matrix distribution information and methods to compute matrix multiplication
and local triangular solves. Epetra provide four classes that are implementations of
Epetra_RowMatrix. Specifically:

1. Epetra_CrsMatrix: Compressed Row Storage scalar entry matrix.
2. Epetra_FECrsMatrix: Finite Element Compressed Row Storage matrix.
3. Epetra_VbrMatrix: Variable Block Row block entry matrix.
4. Epetra_FEVbrMatrix: Finite Element Variable Block Row matrix.
Note: Epetra_JadOperator does not implement Epetra_RowMatrix, but is worth
mentioning for users of vector processors. This class is a first version to support
vectorization of sparse matrix-vector multiplication.

In addition, there are numerous other implementation of Epetra_RowMatrix provided in
other packages. For example:

1. Epetra_MsrMatrix: This class is provided within AztecOO. The constructor for
Epetra_MsrMatrix takes a single argument, namely an existing AZ_DMSR matrix as

2 If the number of entries in the matrix exactly match the profile used to create the matrix, packing is does not need
to move any data, but it is not a big performance hit if the profile is somewhat larger.

VSR

SR

 12

defined in the Aztec 2.1 User Guide [9]. Epetra_MsrMatrix does not make a copy of
the Aztec matrix. Instead it make the Aztec matrix act like an Epetra_RowMatrix
object.

2. Ifpack Filters: Ifpack uses the Epetra_RowMatrix interface to provide modified
views of existing Epetra_RowMatrix objects. For example, Ifpack_DropFilter
creates a new Epetra_RowMatrix from an existing one by dropping all matrix values
below a certain tolerance.

6.1 Use Epetra_FEVbrMatrix to construct a matrix with dense block entries and
repeated summations into block entries: Epetra_FEVbrMatrix is designed to handle
problems such as finite element, finite volume or finite difference problems where multiple
degrees of freedom are being tracked at a single mesh point, and the matrix block entries are
being summed into the global stiffness matrix one finite element or control volume cell at a
time. In these situations, one can construct an Epetra_CrsGraph object that encodes the mesh
connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are
being tracked at each mesh node. Note: Epetra_FEVbrMatrix is derived from
Epetra_VbrMatrix. At the end of the construction phase, the Epetra_FEVbrMatrix object isa
Epetra_VbrMatrix object.

6.2 Use Epetra_VbrMatrix to construct a matrix with dense block entries and few
repeated submissions: Epetra_VbrMatrix is designed to handle problems such as finite
element, finite volume or finite difference problems where multiple degrees of freedom are
being tracked at a single mesh point, but matrix block entries are typically not repeated
summed into the global stiffness matrix one element or control volume cell at a time. In
these situations, one can construct an Epetra_CrsGraph object that encodes the mesh
connectivity, using Eptra_BlockMap objects to describe how many degrees of freedom are
being tracked at each mesh node. Note: Presently the Epetra_VbrMatrix class does not have
optimal performance for small block entry matrices. Block entries should be of size 4 or
larger before Vbr formats are preferable to Crs formats.

6.3 Use Epetra_FECrsMatrix to construct a matrix with scalar entries and repeated
summations into entries: Epetra_FECrsMatrix is designed to handle problems such as finite
element, finite volume or finite difference problems where a single degree of freedom is
being tracked at a single mesh point, and the matrix entries are being summed into the global
stiffness matrix one finite element or control volume cell at a time.

6.4 Use Epetra_CrsMatrix in all other cases: Epetra_CrsMatrix is the simplest and most
natural matrix data structure for people who are used to thinking about sparse matrices.
Unless you have one of the above three situations, you should use Epetra_CrsMatrix.

6.5 Use Epetra_RowMatrix to access matrix entries: If you are writing code to use an
existing Epetra sparse matrix object, use the Epetra_RowMatrix interface to access the
matrix. This will provide you compatibility with all of Epetra’s sparse matrix classes, and
allow users of your code to provide their own custom implementation of Epetra_RowMatrix
if needed.

VSR

VSR

R

VSR

VSR

 13

R

7. Parallel Data Redistribution
Epetra has extensive capabilities for redistributing already-distributed objects. Good load
balancing and good scalability depend on a balanced work and data load across processors.
EpetraExt provides an interface to the Zoltan load balancing library. Zoltan can be used by
EpetraExt to compute a redistribution of matrices, vectors and multivectors that has better
load balance.

7.1 Use EpetraExt to balance load: Although an advanced feature, any serious use of
Epetra for scalable performance must ensure that work and data are balanced across the
parallel machine. EpetraExt provides an interface to the Zoltan library that can greatly
improve the load balance for typical sparse matrix computations.

7.2 Use Epetra_OffsetIndex to improve performance of multiple redistributions: Often
the data distribution that is optimal for constructing sparse matrices is not optimal for solving
the related system of equations. As a result, the matrix will be constructed in one
distribution, and then redistributed for the solve. Epetra_OffsetIndex precomputes the offsets
for the redistribution pattern, making repeated redistributions cheaper.

8. General Practices
8.1 Check method return codes: Almost all methods of Epetra classes provide an integer
return argument. This argument is set to zero if no errors or warning occurred. However, a
number of performance-sensitive methods will communicate potential performance problems
by returning a positive error code. For example, if the matrix insertion routine must re-
allocate memory because the allocated row storage is too small, a return code of 1 is set.
Since memory reallocation can be expensive, this information can be an indication that the
user should increase the nonzero profile values (NumEntriesPerRow).

8.2 Compile Epetra with aggressive optimization: Epetra performance can benefit greatly
from aggressive compiler optimization settings. In particular, aggressive optimization for
FORTRAN can be especially important. Configuring Epetra (or Epetra as part of Trilinos)
with the following compiler flags works well on 32-bit PC platforms with the GCC
compilers:

../configure CXXFLAGS="-O3" CFLAGS="-O3" \
 FFLAGS="-O5 -funroll-all-loops -malign-double"

VSR

R

VSR

 14

9. Extended Capabilities
Epetra provides several general-purpose data structures for sparse computations. However,
there are other sources for high performance kernels and we provide access to several other
libraries. Furthermore, it is often the case that—for users who know their data—special-
purpose kernels can provide the best performance.

Use OSKI if it performs well for your problems: Trilinos provides an interface to OSKI
[10] the sparse kernel package from UC Berkeley. Information on its performance
characteristics is available [11]. The primary class of interest is Epetra_OskiMatrix.

Use PETSc AIJ Matrix wrappers if already using PETSc: Current PETSc [12] users who
have already invested in PETSc data structures can use PETSc matrices and vectors with
Trilinos solvers and preconditioners using the Epetra_PETScAIJMatrix class, which wraps
the PETSc matrix and uses it to satisfy the Epetra_RowMatrix interface. Only minimal extra
storage is required. This class is part of EpetraExt.

Write your own custom matrix class for optimal storage and performance: Although
any of the above approaches can be a good answer for good sparse matrix kernel
performance, it is almost always possible for sophisticated users to provide their own
implementation of Epetra_RowMatrix that specifically addresses their problem and performs
better than a generic approach. Trilinos is different than all other library packages that we
know about in that all of our solvers and preconditioners use the Epetra_RowMatrix interface
to access data. Because of this, even if you use your own matrix data structures, you can still
use all Trilinos preconditioners and solvers since they are not tied to a data structure, but
instead access data through an interface.

R

R

R

 15

References

[1] Epetra Home Page: http://software.sandia.gov/trilinos/packages/epetra, 11 March 2005.

[2] Trilinos Home Page: http://software.sandia.gov/trilinos, 8 December 2003.

[3] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms
 for Fortran usage. ACM Transactions on Mathematical Software, 5, 1979.

[4] J.J. Dongarra, J. DuCroz, S. Hammarling, and R. Hanson. An extended set of
 Fortran basic linear algebra subprograms. ACM Transactions on Mathematical
 Software, 14, 1988.

[5] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of
 level 3 basic linear algebra subprograms. ACM Transactions on Mathematical
 Software, 16(1):1–17, March 1990.

[6] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du
 Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
 D. Sorensen. LAPACK Users’ Guide. SIAM Pub., Philadelphia, PA, Third
 Edition, 1999.

[7] Atlas BLAS Home Page: http://math-atlas.sourceforge.net, 11 March 2005.

[8] GOTO BLAS Home Page: http://www.cs.utexas.edu/users/flame/goto, 11 March 2005.

[9] Ray S. Tuminaro, Michael A. Heroux, Scott. A. Hutchinson, and J. N. Shadid.
 Official Aztec User’s Guide, Version 2.1. Sandia National Laboratories,
 Albuquerque, NM 87185, 1999.

[10] OSKI Home Page : http://bebop.cs.berkeley.edu/oski/, 8 February 2009.

[11] Karlin, I. and J. Hu. Overview and Performance Analysis of the Epetra/OSKI Matrix Class

in Trilinos. in CSRI Summer Proceedings. 2008.

[12] PETSc Home Page : http://www.mcs.anl.gov/petsc/petsc-as/, 8 February 2009.

