Stratimikos  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
simple_stratimikos_example.cpp

Simple example program for how the Stratimikos::DefaultLinearSolverBuilder class is used to take a parameter list (e.g. read from a file) and use it so solve a linear system read in as Epetra objects from a file.

Outline

Example program source (with line numbers)

1 // @HEADER
2 // *****************************************************************************
3 // Stratimikos: Thyra-based strategies for linear solvers
4 //
5 // Copyright 2006 NTESS and the Stratimikos contributors.
6 // SPDX-License-Identifier: BSD-3-Clause
7 // *****************************************************************************
8 // @HEADER
9 
10 #include "Stratimikos_DefaultLinearSolverBuilder.hpp"
12 #include "Teuchos_GlobalMPISession.hpp"
13 #include "Teuchos_VerboseObject.hpp"
14 #include "Teuchos_XMLParameterListHelpers.hpp"
15 #include "Teuchos_CommandLineProcessor.hpp"
16 #include "Teuchos_StandardCatchMacros.hpp"
17 #ifdef HAVE_MPI
18 # include "Epetra_MpiComm.h"
19 #else
20 # include "Epetra_SerialComm.h"
21 #endif
22 
23 
24 namespace {
25 
26 
27 // Helper function to compute a single norm for a vector
28 double epetraNorm2( const Epetra_Vector &v )
29 {
30  double norm[1] = { -1.0 };
31  v.Norm2(&norm[0]);
32  return norm[0];
33 }
34 
35 
36 } // namespace
37 
38 
39 int main(int argc, char* argv[])
40 {
41 
42  using Teuchos::rcp;
43  using Teuchos::RCP;
45  typedef Teuchos::ParameterList::PrintOptions PLPrintOptions;
46 
47  bool success = true;
48  bool verbose = true;
49 
50  Teuchos::GlobalMPISession mpiSession(&argc, &argv);
51 
54 
55  try {
56 
57 
58  //
59  // A) Program setup code
60  //
61 
62  //
63  // Read options from command-line
64  //
65 
66  std::string matrixFile = "";
67  std::string extraParamsFile = "";
68  double tol = 1e-5;
69  bool onlyPrintOptions = false;
70  bool printXmlFormat = false;
71  bool showDoc = true;
72 
73  Stratimikos::DefaultLinearSolverBuilder linearSolverBuilder;
74 
75  CommandLineProcessor clp(false); // Don't throw exceptions
76 
77  // Set up command-line options for the linear solver that will be used!
78  linearSolverBuilder.setupCLP(&clp);
79 
80  clp.setOption( "matrix-file", &matrixFile
81  ,"Defines the matrix and perhaps the RHS and LHS for a linear system to be solved." );
82  clp.setOption( "tol", &tol, "Tolerance to check against the scaled residual norm." );
83  clp.setOption( "extra-params-file", &extraParamsFile, "File containing extra parameters in XML format.");
84  clp.setOption( "only-print-options", "continue-after-printing-options", &onlyPrintOptions
85  ,"Only print options and stop or continue on" );
86  clp.setOption( "print-xml-format", "print-readable-format", &printXmlFormat
87  ,"Print the valid options in XML format or in readable format." );
88  clp.setOption( "show-doc", "hide-doc", &showDoc
89  ,"Print the valid options with or without documentation." );
90 
91  clp.setDocString(
92  "Simple example for the use of the Stratimikos facade Stratimikos::DefaultLinearSolverBuilder.\n"
93  "\n"
94  "To print out just the valid options use --matrix-file=\"\" --only-print-options with --print-xml-format"
95  " or --print-readable-format.\n"
96  "\n"
97  "To solve a linear system read from a file use --matrix-file=\"SomeFile.mtx\""
98  " with options read from an XML file using --linear-solver-params-file=\"SomeFile.xml\"\n"
99  );
100 
101  CommandLineProcessor::EParseCommandLineReturn parse_return = clp.parse(argc,argv);
102  if( parse_return != CommandLineProcessor::PARSE_SUCCESSFUL ) return parse_return;
103 
104  //
105  // Print out the valid options and stop if asked
106  //
107 
108  if(onlyPrintOptions) {
109  if(printXmlFormat)
110  Teuchos::writeParameterListToXmlOStream(
111  *linearSolverBuilder.getValidParameters()
112  ,*out
113  );
114  else
115  linearSolverBuilder.getValidParameters()->print(
116  *out,PLPrintOptions().indent(2).showTypes(true).showDoc(showDoc)
117  );
118  return 0;
119  }
120 
121 
122  //
123  // B) Epetra-specific code that sets up the linear system to be solved
124  //
125  // While the below code reads in the Epetra objects from a file, you can
126  // setup the Epetra objects any way you would like. Note that this next
127  // set of code as nothing to do with Thyra at all, and it should not.
128  //
129 
130  *out << "\nReading linear system in Epetra format from the file \'"<<matrixFile<<"\' ...\n";
131 
132 #ifdef HAVE_MPI
133  Epetra_MpiComm comm(MPI_COMM_WORLD);
134 #else
135  Epetra_SerialComm comm;
136 #endif
137  RCP<Epetra_CrsMatrix> epetra_A;
138  RCP<Epetra_Vector> epetra_x, epetra_b;
139  EpetraExt::readEpetraLinearSystem( matrixFile, comm, &epetra_A, NULL, &epetra_x, &epetra_b );
140 
141  if(!epetra_b.get()) {
142  *out << "\nThe RHS b was not read in so generate a new random vector ...\n";
143  epetra_b = rcp(new Epetra_Vector(epetra_A->OperatorRangeMap()));
144  epetra_b->Random();
145  }
146 
147  if(!epetra_x.get()) {
148  *out << "\nThe LHS x was not read in so generate a new zero vector ...\n";
149  epetra_x = rcp(new Epetra_Vector(epetra_A->OperatorDomainMap()));
150  epetra_x->PutScalar(0.0); // Initial guess is critical!
151  }
152 
153  *out << "\nPrinting statistics of the Epetra linear system ...\n";
154 
155  *out
156  << "\n Epetra_CrsMatrix epetra_A of dimension "
157  << epetra_A->OperatorRangeMap().NumGlobalElements()
158  << " x " << epetra_A->OperatorDomainMap().NumGlobalElements()
159  << "\n ||epetraA||inf = " << epetra_A->NormInf()
160  << "\n ||epetra_b||2 = " << epetraNorm2(*epetra_b)
161  << "\n ||epetra_x||2 = " << epetraNorm2(*epetra_x)
162  << "\n";
163 
164 
165  //
166  // C) The "Glue" code that takes Epetra objects and wraps them as Thyra
167  // objects
168  //
169  // This next set of code wraps the Epetra objects that define the linear
170  // system to be solved as Thyra objects so that they can be passed to the
171  // linear solver.
172  //
173 
174  RCP<const Thyra::LinearOpBase<double> > A = Thyra::epetraLinearOp( epetra_A );
175  RCP<Thyra::VectorBase<double> > x = Thyra::create_Vector( epetra_x, A->domain() );
176  RCP<const Thyra::VectorBase<double> > b = Thyra::create_Vector( epetra_b, A->range() );
177 
178  // Note that above Thyra is only interacted with in the most trival of
179  // ways. For most users, Thyra will only be seen as a thin wrapper that
180  // they need know little about in order to wrap their objects in order to
181  // pass them to Thyra-enabled solvers.
182 
183 
184  //
185  // D) Thyra-specific code for solving the linear system
186  //
187  // Note that this code has no mention of any concrete implementation and
188  // therefore can be used in any use case.
189  //
190 
191  // Reading in the solver parameters from the parameters file and/or from
192  // the command line. This was setup by the command-line options
193  // set by the setupCLP(...) function above.
194  linearSolverBuilder.readParameters(out.get());
195 
196  // Augment parameters if appropriate
197  if(extraParamsFile.length()) {
198  Teuchos::updateParametersFromXmlFile( "./"+extraParamsFile,
199  linearSolverBuilder.getNonconstParameterList().ptr() );
200  }
201 
202  // Create a linear solver factory given information read from the
203  // parameter list.
204  RCP<Thyra::LinearOpWithSolveFactoryBase<double> > lowsFactory =
205  linearSolverBuilder.createLinearSolveStrategy("");
206 
207  // Setup output stream and the verbosity level
208  lowsFactory->setOStream(out);
209  lowsFactory->setVerbLevel(Teuchos::VERB_LOW);
210 
211  // Create a linear solver based on the forward operator A
212  RCP<Thyra::LinearOpWithSolveBase<double> > lows =
213  Thyra::linearOpWithSolve(*lowsFactory, A);
214 
215  // Solve the linear system (note: the initial guess in 'x' is critical)
217  Thyra::solve<double>(*lows, Thyra::NOTRANS, *b, x.ptr());
218  *out << "\nSolve status:\n" << status;
219 
220  // Write the linear solver parameters after they were read
221  linearSolverBuilder.writeParamsFile(*lowsFactory);
222 
223 
224  //
225  // E) Post process the solution and check the error
226  //
227  // Note that the below code is based only on the Epetra objects themselves
228  // and does not in any way depend or interact with any Thyra-based
229  // objects. The point is that most users of Thyra can largely gloss over
230  // the fact that Thyra is really being used for anything.
231  //
232 
233  // Wipe out the Thyra wrapper for x to guarantee that the solution will be
234  // written back to epetra_x! At the time of this writting this is not
235  // really needed but the behavior may change at some point so this is a
236  // good idea.
237  x = Teuchos::null;
238 
239  *out
240  << "\nSolution ||epetra_x||2 = " << epetraNorm2(*epetra_x) << "\n";
241 
242  *out << "\nTesting the solution error ||b-A*x||/||b|| computed through the Epetra objects ...\n";
243 
244  // r = b - A*x
245  Epetra_Vector epetra_r(*epetra_b);
246  {
247  Epetra_Vector epetra_A_x(epetra_A->OperatorRangeMap());
248  epetra_A->Apply(*epetra_x,epetra_A_x);
249  epetra_r.Update(-1.0,epetra_A_x,1.0);
250  }
251 
252  const double
253  nrm_r = epetraNorm2(epetra_r),
254  nrm_b = epetraNorm2(*epetra_b),
255  rel_err = ( nrm_r / nrm_b );
256  const bool
257  passed = (rel_err <= tol);
258 
259  *out
260  << "||b-A*x||/||b|| = " << nrm_r << "/" << nrm_b << " = " << rel_err
261  << " < tol = " << tol << " ? " << ( passed ? "passed" : "failed" ) << "\n";
262 
263  if(!passed) success = false;
264 
265  }
266  TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success)
267 
268  if (verbose) {
269  if(success) *out << "\nCongratulations! All of the tests checked out!\n";
270  else *out << "\nOh no! At least one of the tests failed!\n";
271  }
272 
273  return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
274 
275 }
T * get() const
void readParameters(std::ostream *out)
Force the parameters to be read from a file and/or an extra XML string.
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
RCP< VectorBase< double > > create_Vector(const RCP< Epetra_Vector > &epetra_v, const RCP< const VectorSpaceBase< double > > &space=Teuchos::null)
static RCP< FancyOStream > getDefaultOStream()
void readEpetraLinearSystem(const std::string &fileName, const Epetra_Comm &comm, Teuchos::RCP< Epetra_CrsMatrix > *A=NULL, Teuchos::RCP< Epetra_Map > *map=NULL, Teuchos::RCP< Epetra_Vector > *x=NULL, Teuchos::RCP< Epetra_Vector > *b=NULL, Teuchos::RCP< Epetra_Vector > *xExact=NULL)
RCP< Thyra::LinearOpWithSolveFactoryBase< Scalar > > createLinearSolveStrategy(const std::string &linearSolveStrategyName) const
Concrete subclass of Thyra::LinearSolverBuilderBase for creating Thyra::LinearOpWithSolveFactoryBase ...
#define TEUCHOS_STANDARD_CATCH_STATEMENTS(VERBOSE, ERR_STREAM, SUCCESS_FLAG)
void writeParamsFile(const Thyra::LinearOpWithSolveFactoryBase< Scalar > &lowsFactory, const std::string &outputXmlFileName="") const
Write the parameters list for a LinearOpWithSolveFactoryBase object to a file after the parameters ar...
void setupCLP(Teuchos::CommandLineProcessor *clp)
Setup the command-line processor to read in the needed data to extra the parameters from...
RCP< const ParameterList > getValidParameters() const

Command-line options for the driver program

Teuchos::GlobalMPISession::GlobalMPISession(): started serial run

Echoing the command-line:

/home/rabartl/PROJECTS/Trilinos.base/BUILDS/CMAKE/SERIAL_DEBUG/packages/stratimikos/example/Stratimikos_simple_stratimikos_example.exe --echo-command-line --help 

Usage: /home/rabartl/PROJECTS/Trilinos.base/BUILDS/CMAKE/SERIAL_DEBUG/packages/stratimikos/example/Stratimikos_simple_stratimikos_example.exe [options]
  options:
  --help                                     Prints this help message
  --pause-for-debugging                      Pauses for user input to allow attaching a debugger
  --echo-command-line                        Echo the command-line but continue as normal
  --linear-solver-params-file        string  Name of an XML file containing parameters for linear solver options to be appended first.
                                             (default: --linear-solver-params-file="")
  --extra-linear-solver-params       string  An XML string containing linear solver parameters to be appended second.
                                             (default: --extra-linear-solver-params="")
  --linear-solver-params-used-file   string  Name of an XML file that can be written with the parameter list after it has been used on completion of this program.
                                             (default: --linear-solver-params-used-file="")
  --matrix-file                      string  Defines the matrix and perhaps the RHS and LHS for a linear system to be solved.
                                             (default: --matrix-file="")
  --tol                              double  Tolerance to check against the scaled residual norm.
                                             (default: --tol=1e-05)
  --only-print-options               bool    Only print options and stop or continue on
  --continue-after-printing-options          (default: --continue-after-printing-options)
  --print-xml-format                 bool    Print the valid options in XML format or in readable format.
  --print-readable-format                    (default: --print-readable-format)
  --show-doc                         bool    Print the valid options with or without documentation.
  --hide-doc                                 (default: --show-doc)

DETAILED DOCUMENTATION:

Simple example for the use of the Stratimikos facade Stratimikos::DefaultLinearSolverBuilder.

To print out just the valid options use --matrix-file="" --only-print-options with --print-xml-format or --print-readable-format.

To solve a linear system from a system read from a file use --matrix-file="SomeFile.mtx" with options read from an XML file using --linear-solver-params-file="SomeFile.xml"


Example input XML file

Here is an example input XML file, called amesos.klu.xml, that specifies that the KLU solver from Amesos be used to solve the linear system:

<ParameterList>
  <Parameter isUsed="true" name="Linear Solver Type" type="string" value="Amesos"/>
  <ParameterList name="Linear Solver Types">
    <ParameterList name="Amesos">
      <ParameterList name="Amesos Settings"/>
      <Parameter name="Solver Type" type="string" value="Klu"/>
    </ParameterList>
  </ParameterList>
  <Parameter name="Preconditioner Type" type="string" value="None"/>
</ParameterList>

Example program output

Sample output looks like when using the above amesos.klu.xml file as input with a test system:

Teuchos::GlobalMPISession::GlobalMPISession(): started serial run

Echoing the command-line:

/home/rabartl/PROJECTS/Trilinos.base/BUILDS/CMAKE/SERIAL_DEBUG/packages/stratimikos/example/Stratimikos_simple_stratimikos_example.exe --echo-command-line --matrix-file=FourByFour.mtx --linear-solver-params-file=amesos.klu.xml 


Reading linear system in Epetra format from the file 'FourByFour.mtx' ...

Printing statistics of the Epetra linear system ...

  Epetra_CrsMatrix epetra_A of dimension 4 x 4
  ||epetraA||inf = 1.643
  ||epetra_b||2 = 1.52593
  ||epetra_x||2 = 0

Reading parameters from XML file "amesos.klu.xml" ...
 
 Solving block system using Amesos solver Amesos_Klu ...
 
 
 Total solve time = 0 sec

Solve status:
 solveStatus = SOLVE_STATUS_CONVERGED
 achievedTol = unknownTolerance()
 message:
  Solver Amesos_Klu converged!
 extraParameters: NONE

Solution ||epetra_x||2 = 1.24984

Testing the solution error ||b-A*x||/||b|| computed through the Epetra objects ...
||b-A*x||/||b|| = 1.11022e-16/1.52593 = 7.27571e-17 < tol = 1e-05 ? passed

Congratulations! All of the tests checked out!

Example program source (without line numbers)

Here is the main driver program itself without line numbers:

// @HEADER
// *****************************************************************************
// Stratimikos: Thyra-based strategies for linear solvers
//
// Copyright 2006 NTESS and the Stratimikos contributors.
// SPDX-License-Identifier: BSD-3-Clause
// *****************************************************************************
// @HEADER
#include "Stratimikos_DefaultLinearSolverBuilder.hpp"
#include "Teuchos_GlobalMPISession.hpp"
#include "Teuchos_VerboseObject.hpp"
#include "Teuchos_XMLParameterListHelpers.hpp"
#include "Teuchos_CommandLineProcessor.hpp"
#include "Teuchos_StandardCatchMacros.hpp"
#ifdef HAVE_MPI
# include "Epetra_MpiComm.h"
#else
# include "Epetra_SerialComm.h"
#endif
namespace {
// Helper function to compute a single norm for a vector
double epetraNorm2( const Epetra_Vector &v )
{
double norm[1] = { -1.0 };
v.Norm2(&norm[0]);
return norm[0];
}
} // namespace
int main(int argc, char* argv[])
{
using Teuchos::rcp;
using Teuchos::RCP;
typedef Teuchos::ParameterList::PrintOptions PLPrintOptions;
bool success = true;
bool verbose = true;
Teuchos::GlobalMPISession mpiSession(&argc, &argv);
try {
//
// A) Program setup code
//
//
// Read options from command-line
//
std::string matrixFile = "";
std::string extraParamsFile = "";
double tol = 1e-5;
bool onlyPrintOptions = false;
bool printXmlFormat = false;
bool showDoc = true;
CommandLineProcessor clp(false); // Don't throw exceptions
// Set up command-line options for the linear solver that will be used!
linearSolverBuilder.setupCLP(&clp);
clp.setOption( "matrix-file", &matrixFile
,"Defines the matrix and perhaps the RHS and LHS for a linear system to be solved." );
clp.setOption( "tol", &tol, "Tolerance to check against the scaled residual norm." );
clp.setOption( "extra-params-file", &extraParamsFile, "File containing extra parameters in XML format.");
clp.setOption( "only-print-options", "continue-after-printing-options", &onlyPrintOptions
,"Only print options and stop or continue on" );
clp.setOption( "print-xml-format", "print-readable-format", &printXmlFormat
,"Print the valid options in XML format or in readable format." );
clp.setOption( "show-doc", "hide-doc", &showDoc
,"Print the valid options with or without documentation." );
clp.setDocString(
"Simple example for the use of the Stratimikos facade Stratimikos::DefaultLinearSolverBuilder.\n"
"\n"
"To print out just the valid options use --matrix-file=\"\" --only-print-options with --print-xml-format"
" or --print-readable-format.\n"
"\n"
"To solve a linear system read from a file use --matrix-file=\"SomeFile.mtx\""
" with options read from an XML file using --linear-solver-params-file=\"SomeFile.xml\"\n"
);
CommandLineProcessor::EParseCommandLineReturn parse_return = clp.parse(argc,argv);
if( parse_return != CommandLineProcessor::PARSE_SUCCESSFUL ) return parse_return;
//
// Print out the valid options and stop if asked
//
if(onlyPrintOptions) {
if(printXmlFormat)
Teuchos::writeParameterListToXmlOStream(
*linearSolverBuilder.getValidParameters()
,*out
);
else
linearSolverBuilder.getValidParameters()->print(
*out,PLPrintOptions().indent(2).showTypes(true).showDoc(showDoc)
);
return 0;
}
//
// B) Epetra-specific code that sets up the linear system to be solved
//
// While the below code reads in the Epetra objects from a file, you can
// setup the Epetra objects any way you would like. Note that this next
// set of code as nothing to do with Thyra at all, and it should not.
//
*out << "\nReading linear system in Epetra format from the file \'"<<matrixFile<<"\' ...\n";
#ifdef HAVE_MPI
Epetra_MpiComm comm(MPI_COMM_WORLD);
#else
#endif
RCP<Epetra_CrsMatrix> epetra_A;
RCP<Epetra_Vector> epetra_x, epetra_b;
EpetraExt::readEpetraLinearSystem( matrixFile, comm, &epetra_A, NULL, &epetra_x, &epetra_b );
if(!epetra_b.get()) {
*out << "\nThe RHS b was not read in so generate a new random vector ...\n";
epetra_b = rcp(new Epetra_Vector(epetra_A->OperatorRangeMap()));
epetra_b->Random();
}
if(!epetra_x.get()) {
*out << "\nThe LHS x was not read in so generate a new zero vector ...\n";
epetra_x = rcp(new Epetra_Vector(epetra_A->OperatorDomainMap()));
epetra_x->PutScalar(0.0); // Initial guess is critical!
}
*out << "\nPrinting statistics of the Epetra linear system ...\n";
*out
<< "\n Epetra_CrsMatrix epetra_A of dimension "
<< epetra_A->OperatorRangeMap().NumGlobalElements()
<< " x " << epetra_A->OperatorDomainMap().NumGlobalElements()
<< "\n ||epetraA||inf = " << epetra_A->NormInf()
<< "\n ||epetra_b||2 = " << epetraNorm2(*epetra_b)
<< "\n ||epetra_x||2 = " << epetraNorm2(*epetra_x)
<< "\n";
//
// C) The "Glue" code that takes Epetra objects and wraps them as Thyra
// objects
//
// This next set of code wraps the Epetra objects that define the linear
// system to be solved as Thyra objects so that they can be passed to the
// linear solver.
//
RCP<const Thyra::LinearOpBase<double> > A = Thyra::epetraLinearOp( epetra_A );
RCP<Thyra::VectorBase<double> > x = Thyra::create_Vector( epetra_x, A->domain() );
RCP<const Thyra::VectorBase<double> > b = Thyra::create_Vector( epetra_b, A->range() );
// Note that above Thyra is only interacted with in the most trival of
// ways. For most users, Thyra will only be seen as a thin wrapper that
// they need know little about in order to wrap their objects in order to
// pass them to Thyra-enabled solvers.
//
// D) Thyra-specific code for solving the linear system
//
// Note that this code has no mention of any concrete implementation and
// therefore can be used in any use case.
//
// Reading in the solver parameters from the parameters file and/or from
// the command line. This was setup by the command-line options
// set by the setupCLP(...) function above.
linearSolverBuilder.readParameters(out.get());
// Augment parameters if appropriate
if(extraParamsFile.length()) {
Teuchos::updateParametersFromXmlFile( "./"+extraParamsFile,
linearSolverBuilder.getNonconstParameterList().ptr() );
}
// Create a linear solver factory given information read from the
// parameter list.
RCP<Thyra::LinearOpWithSolveFactoryBase<double> > lowsFactory =
linearSolverBuilder.createLinearSolveStrategy("");
// Setup output stream and the verbosity level
lowsFactory->setOStream(out);
lowsFactory->setVerbLevel(Teuchos::VERB_LOW);
// Create a linear solver based on the forward operator A
RCP<Thyra::LinearOpWithSolveBase<double> > lows =
Thyra::linearOpWithSolve(*lowsFactory, A);
// Solve the linear system (note: the initial guess in 'x' is critical)
Thyra::solve<double>(*lows, Thyra::NOTRANS, *b, x.ptr());
*out << "\nSolve status:\n" << status;
// Write the linear solver parameters after they were read
linearSolverBuilder.writeParamsFile(*lowsFactory);
//
// E) Post process the solution and check the error
//
// Note that the below code is based only on the Epetra objects themselves
// and does not in any way depend or interact with any Thyra-based
// objects. The point is that most users of Thyra can largely gloss over
// the fact that Thyra is really being used for anything.
//
// Wipe out the Thyra wrapper for x to guarantee that the solution will be
// written back to epetra_x! At the time of this writting this is not
// really needed but the behavior may change at some point so this is a
// good idea.
x = Teuchos::null;
*out
<< "\nSolution ||epetra_x||2 = " << epetraNorm2(*epetra_x) << "\n";
*out << "\nTesting the solution error ||b-A*x||/||b|| computed through the Epetra objects ...\n";
// r = b - A*x
Epetra_Vector epetra_r(*epetra_b);
{
Epetra_Vector epetra_A_x(epetra_A->OperatorRangeMap());
epetra_A->Apply(*epetra_x,epetra_A_x);
epetra_r.Update(-1.0,epetra_A_x,1.0);
}
const double
nrm_r = epetraNorm2(epetra_r),
nrm_b = epetraNorm2(*epetra_b),
rel_err = ( nrm_r / nrm_b );
const bool
passed = (rel_err <= tol);
*out
<< "||b-A*x||/||b|| = " << nrm_r << "/" << nrm_b << " = " << rel_err
<< " < tol = " << tol << " ? " << ( passed ? "passed" : "failed" ) << "\n";
if(!passed) success = false;
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success)
if (verbose) {
if(success) *out << "\nCongratulations! All of the tests checked out!\n";
else *out << "\nOh no! At least one of the tests failed!\n";
}
return ( success ? EXIT_SUCCESS : EXIT_FAILURE );
}

Generated on Wed Jan 22 2025 09:22:02 for Stratimikos by doxygen 1.8.5