31 #include "EpetraExt_VectorOut.h" 
   32 #include "EpetraExt_RowMatrixOut.h" 
   40   bool nonlinear_expansion = 
false;  
 
   42   bool symmetric = 
false;            
 
   44   double g_mean_exp = 0.172988;      
 
   45   double g_std_dev_exp = 0.0380007;  
 
   50   MPI_Init(&argc,&argv);
 
   67     MyPID = globalComm->
MyPID();
 
   71     for (
int i=0; i<num_KL; i++)
 
   76     int sz = basis->size();
 
   78     if (nonlinear_expansion)
 
   79       Cijk = basis->computeTripleProductTensor();
 
   81       Cijk = basis->computeLinearTripleProductTensor();
 
   86       std::cout << 
"Stochastic Galerkin expansion size = " << sz << std::endl;
 
   89     int num_spatial_procs = -1;
 
   91     parallelParams.
set(
"Number of Spatial Processors", num_spatial_procs);
 
  107            nonlinear_expansion, symmetric));
 
  112     if (!nonlinear_expansion) {
 
  113       sgParams->
set(
"Parameter Expansion Type", 
"Linear");
 
  114       sgParams->
set(
"Jacobian Expansion Type", 
"Linear");
 
  118     precParams.
set(
"default values", 
"SA");
 
  119     precParams.
set(
"ML output", 0);
 
  120     precParams.
set(
"max levels",5);
 
  121     precParams.
set(
"increasing or decreasing",
"increasing");
 
  122     precParams.
set(
"aggregation: type", 
"Uncoupled");
 
  123     precParams.
set(
"smoother: type",
"ML symmetric Gauss-Seidel");
 
  124     precParams.
set(
"smoother: sweeps",2);
 
  125     precParams.
set(
"smoother: pre or post", 
"both");
 
  126     precParams.
set(
"coarse: max size", 200);
 
  127     precParams.
set(
"PDE equations",sz);
 
  128 #ifdef HAVE_ML_AMESOS 
  129     precParams.
set(
"coarse: type",
"Amesos-KLU");
 
  131     precParams.
set(
"coarse: type",
"Jacobi");
 
  138          expansion, sg_parallel_data, 
 
  146     basis->evaluateBases(point, basis_vals);
 
  149     for (
int i=0; i<num_KL; i++) {
 
  150       sg_p_poly->
term(i,0)[i] = 0.0;
 
  151       sg_p_poly->
term(i,1)[i] = 1.0 / basis_vals[i+1];
 
  158     sg_x->PutScalar(0.0);
 
  166       Teuchos::rcp(
new ML_Epetra::MultiLevelPreconditioner(*sg_J, precParams,
 
  170     EpetraExt::ModelEvaluator::InArgs sg_inArgs = sg_model->
createInArgs();
 
  171     EpetraExt::ModelEvaluator::OutArgs sg_outArgs = sg_model->
createOutArgs();
 
  172     sg_inArgs.set_p(1, sg_p);
 
  173     sg_inArgs.set_x(sg_x);
 
  174     sg_outArgs.set_f(sg_f);
 
  175     sg_outArgs.set_W(sg_J);
 
  178     sg_model->
evalModel(sg_inArgs, sg_outArgs);
 
  179     sg_M->ComputePreconditioner();
 
  183     sg_f->Norm2(&norm_f);
 
  185       std::cout << 
"\nInitial residual norm = " << norm_f << std::endl;
 
  190       aztec.SetAztecOption(AZ_solver, AZ_cg);
 
  192       aztec.SetAztecOption(AZ_solver, AZ_gmres);
 
  193     aztec.SetAztecOption(AZ_precond, AZ_none);
 
  194     aztec.SetAztecOption(AZ_kspace, 20);
 
  195     aztec.SetAztecOption(AZ_conv, AZ_r0);
 
  196     aztec.SetAztecOption(AZ_output, 1);
 
  197     aztec.SetUserOperator(sg_J.get());
 
  198     aztec.SetPrecOperator(sg_M.get());
 
  199     aztec.SetLHS(sg_dx.get());
 
  200     aztec.SetRHS(sg_f.
get());
 
  203     aztec.Iterate(1000, 1e-12);
 
  206     sg_x->Update(-1.0, *sg_dx, 1.0);
 
  209     EpetraExt::VectorToMatrixMarketFile(
"stochastic_solution_interlaced.mm", 
 
  213     EpetraExt::VectorToMatrixMarketFile(
"stochastic_RHS_interlaced.mm", 
 
  217     EpetraExt::RowMatrixToMatrixMarketFile(
"stochastic_operator_interlaced.mm", 
 
  227     EpetraExt::VectorToMatrixMarketFile(
"mean_gal_interlaced.mm", mean);
 
  228     EpetraExt::VectorToMatrixMarketFile(
"std_dev_gal_interlaced.mm", std_dev);
 
  231     EpetraExt::ModelEvaluator::OutArgs sg_outArgs2 = sg_model->
createOutArgs();
 
  234     sg_f->PutScalar(0.0);
 
  235     sg_outArgs2.set_f(sg_f);
 
  236     sg_outArgs2.set_g(0, sg_g);
 
  237     sg_model->
evalModel(sg_inArgs, sg_outArgs2);
 
  240     sg_f->Norm2(&norm_f);
 
  242       std::cout << 
"\nFinal residual norm = " << norm_f << std::endl;
 
  251     std::cout.precision(16);
 
  255     std::cout << std::endl;
 
  256     std::cout << 
"Response Mean =      " << std::endl << g_mean << std::endl;
 
  257     std::cout << 
"Response Std. Dev. = " << std::endl << g_std_dev << std::endl;
 
  261     if (norm_f < 1.0e-10 &&
 
  262   std::abs(g_mean[0]-g_mean_exp) < g_tol &&
 
  263   std::abs(g_std_dev[0]-g_std_dev_exp) < g_tol)
 
  267   std::cout << 
"Example Passed!" << std::endl;
 
  269   std::cout << 
"Example Failed!" << std::endl;
 
  279   catch (std::exception& e) {
 
  280     std::cout << e.what() << std::endl;
 
  282   catch (std::string& s2) {
 
  283     std::cout << s2 << std::endl;
 
  286     std::cout << s2 << std::endl;
 
  289     std::cout << 
"Caught unknown exception!" << std::endl;
 
Teuchos::RCP< const Epetra_Map > get_x_map() const 
Return solution vector map. 
 
Teuchos::RCP< const Epetra_Map > get_g_map(int l) const 
Return response map. 
 
#define TEUCHOS_FUNC_TIME_MONITOR(FUNCNAME)
 
void computeStandardDeviation(Epetra_Vector &v) const 
Compute standard deviation. 
 
OutArgs createOutArgs() const 
Create OutArgs. 
 
Teuchos::RCP< const EpetraExt::MultiComm > getMultiComm() const 
Get global comm. 
 
void computeMean(Epetra_Vector &v) const 
Compute mean. 
 
Teuchos::RCP< EpetraExt::BlockVector > getBlockVector()
Get block vector. 
 
ParameterList & set(std::string const &name, T &&value, std::string const &docString="", RCP< const ParameterEntryValidator > const &validator=null)
 
InArgs createInArgs() const 
Create InArgs. 
 
virtual int MyPID() const =0
 
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_g_sg(int l, Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const 
Create vector orthog poly using g map. 
 
Teuchos::RCP< const Epetra_Map > get_f_map() const 
Return residual vector map. 
 
ModelEvaluator for a linear 2-D diffusion problem. 
 
TEUCHOS_DEPRECATED RCP< T > rcp(T *p, Dealloc_T dealloc, bool owns_mem)
 
static void summarize(Ptr< const Comm< int > > comm, std::ostream &out=std::cout, const bool alwaysWriteLocal=false, const bool writeGlobalStats=true, const bool writeZeroTimers=true, const ECounterSetOp setOp=Intersection, const std::string &filter="", const bool ignoreZeroTimers=false)
 
Teuchos::RCP< Epetra_Operator > create_W() const 
Create W = alpha*M + beta*J matrix. 
 
KOKKOS_INLINE_FUNCTION PCE< Storage > abs(const PCE< Storage > &a)
 
Teuchos::RCP< const Epetra_Map > get_g_map(int j) const 
Return response function map. 
 
Legendre polynomial basis. 
 
void evalModel(const InArgs &inArgs, const OutArgs &outArgs) const 
Evaluate model on InArgs. 
 
int main(int argc, char **argv)
 
Teuchos::RCP< const Epetra_Comm > getSpatialComm() const 
Get spatial comm. 
 
Teuchos::RCP< const Epetra_Map > get_x_map() const 
Return solution vector map. 
 
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_p_sg(int l, Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const 
Create vector orthog poly using p map. 
 
Teuchos::RCP< Stokhos::EpetraVectorOrthogPoly > create_x_sg(Epetra_DataAccess CV=Copy, const Epetra_Vector *v=NULL) const 
Create vector orthog poly using x map and owned sg map. 
 
coeff_type & term(ordinal_type dimension, ordinal_type order)
Get term for dimension dimension and order order. 
 
static void zeroOutTimers()
 
Nonlinear, stochastic Galerkin ModelEvaluator that constructs a interlaced Jacobian.