ROL
Public Member Functions | Private Attributes | List of all members
OptStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptStdVector< Real, Element >:

Public Member Functions

 OptStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec, Teuchos::RCP< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Modify the dual of vector u to be \(\tilde u = -\ddot u\). More...
 
 OptStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec, bool useRiesz, Teuchos::RCP< InnerProductMatrix< Real > > ipmat)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Modify the dual of vector u to be \(\tilde u = -\ddot u\). More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Attributes

Teuchos::RCP< std::vector
< Element > > 
std_vec_
 
Teuchos::RCP< OptDualStdVector
< Real > > 
dual_vec_
 
Teuchos::RCP< FiniteDifference
< Real > > 
fd_
 
bool useRiesz_
 
Teuchos::RCP
< InnerProductMatrix< Real > > 
ipmat_
 

Detailed Description

template<class Real, class Element = Real>
class OptStdVector< Real, Element >

Definition at line 66 of file dual-spaces/rosenbrock-1/example_01.cpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec,
Teuchos::RCP< FiniteDifference< Real > >  fd 
)
inline

Definition at line 127 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
OptStdVector< Real, Element >::OptStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec,
bool  useRiesz,
Teuchos::RCP< InnerProductMatrix< Real > >  ipmat 
)
inline

Definition at line 114 of file gross-pitaevskii/example_03.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 86 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 95 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 102 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 113 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

Referenced by main().

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 119 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::OptStdVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( ) const
inline
template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 127 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::OptStdVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 133 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

Referenced by OptStdVector< Real, Element >::dot(), OptStdVector< Real, Element >::plus(), and OptStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 135 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_, and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 89 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 98 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 105 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dimension(), OptStdVector< Real, Element >::getVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 116 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 122 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::OptStdVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( ) const
inline
template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 130 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::OptStdVector(), and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 136 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 138 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptStdVector< Real, Element >::dual_vec_, and OptStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 130 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 139 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \).

Implements ROL::Vector< Real >.

Definition at line 148 of file gross-pitaevskii/example_02.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 164 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 170 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( ) const
inline

Definition at line 174 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 178 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 184 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Modify the dual of vector u to be \(\tilde u = -\ddot u\).

Reimplemented from ROL::Vector< Real >.

Definition at line 188 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 117 of file gross-pitaevskii/example_03.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 126 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Modify the dot product between primal variables to be \((u,v)=\int\limits_0^1 \dot u \dot v\,\mathrm{d}x \).

Implements ROL::Vector< Real >.

Definition at line 135 of file gross-pitaevskii/example_03.hpp.

References OptStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 151 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 157 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptStdVector< Real, Element >::getVector ( ) const
inline

Definition at line 161 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 165 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
int OptStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 171 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Modify the dual of vector u to be \(\tilde u = -\ddot u\).

Reimplemented from ROL::Vector< Real >.

Definition at line 175 of file gross-pitaevskii/example_03.hpp.

Member Data Documentation

template<class Real, class Element = Real>
Teuchos::RCP< std::vector< Element > > OptStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
Teuchos::RCP< OptDualStdVector< Real > > OptStdVector< Real, Element >::dual_vec_
mutableprivate
template<class Real, class Element = Real>
Teuchos::RCP<FiniteDifference<Real> > OptStdVector< Real, Element >::fd_
private

Definition at line 122 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
bool OptStdVector< Real, Element >::useRiesz_
private

Definition at line 109 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<InnerProductMatrix<Real> > OptStdVector< Real, Element >::ipmat_
private

Definition at line 110 of file gross-pitaevskii/example_03.hpp.


The documentation for this class was generated from the following files: