MOOCHO
Version of the Day
|
Below is the output file MoochoJournal.out
from the program ExampleNLPBanded.exe
using the command-line arguments
--echo-command-line --nD=3000 --bw=10 --diag-scal=1e+3 --nI=5 --xIl=1e-5 --xo=0.1
given the Moocho.opt
options file shown here.
Here is the other types of output that is associated with this run:
Output file MoochoJournal.out
:
******************************************************************** *** Algorithm iteration detailed journal output *** *** *** *** Below, detailed information about the SQP algorithm is given *** *** while it is running. The amount of information that is *** *** produced can be specified using the option *** *** NLPSolverClientInterface::journal_output_level (the default *** *** is PRINT_NOTHING and produces no output *** ******************************************************************** *** Echoing input options ... begin_options options_group DecompositionSystemStateStepBuilderStd { null_space_matrix = EXPLICIT; range_space_matrix = ORTHOGONAL; } options_group NLPAlgoConfigMamaJama { line_search_method = FILTER; quasi_newton = BFGS; } options_group NLPSolverClientInterface { calc_conditioning = true; calc_matrix_info_null_space_only = true; calc_matrix_norms = true; feas_tol = 1e-7; journal_output_level = PRINT_ALGORITHM_STEPS; journal_print_digits = 10; max_iter = 20; max_run_time = 2.0; null_space_journal_output_level = PRINT_ITERATION_QUANTITIES; opt_tol = 1e-2; } end_options *** Setting up to run MOOCHO on the NLP using a configuration object of type 'MoochoPack::NLPAlgoConfigMamaJama' ... ***************************** *** MoochoSolver::solve() *** ***************************** test_nlp = true: Testing the NLP! ... Testing the supported NLPFirstOrder interface ... ********************************* *** test_nlp_first_order(...) *** ********************************* Testing the vector spaces ... Testing nlp->space_x() ... nlp->space_x() checks out! Testing nlp->space_c() ... nlp->space_c() checks out! ************************************** *** NLPTester::test_interface(...) *** ************************************** nlp->force_xinit_in_bounds(true) nlp->initialize(true) *** Dimensions of the NLP ... nlp->n() = 3005 nlp->m() = 3000 *** Validate the dimensions of the vector spaces ... check: nlp->space_x()->dim() = 3005 == nlp->n() = 3005: true check: nlp->space_c()->dim() = 3000 == nlp->m() = 3000: true *** Validate that the initial starting point is in bounds ... ||nlp->xinit()||inf = 1.00000000e-01 check: xl <= x <= xu : true xinit is in bounds with { max |u| | xl <= x + u <= xu } -> 1.00000000e+50 check: num_bounded(nlp->xl(),nlp->xu()) = 5 == nlp->num_bounded_x() = 5: true Getting the initial estimates for the Lagrange mutipliers ... ||lambda||inf = 0.00000000e+00 ||nu||inf = 0.00000000e+00 nu.nz() = 0 *** Evaluate the point xo ... ||xo||inf = 1.00000000e-01 f(xo) = 1.50250000e+01 ||c(xo)||inf = 1.19973085e+02 *** Report this point to the NLP as suboptimal ... *** Print the number of evaluations ... nlp->num_f_evals() = 1 nlp->num_c_evals() = 1 Calling nlp->calc_Gc(...) at nlp->xinit() ... Calling nlp->calc_Gf(...) at nlp->xinit() ... Comparing directional products Gf'*y and/or Gc'*y with finite difference values FDGf'*y and/or FDGc'*y for random y's ... **** **** Random directional vector 1 ( ||y||_1 / n = 5.02523278e-01 ) *** rel_err(Gf'*y,FDGf'*y) = rel_err(-3.72976994e+00,-3.72976994e+00) = 1.20314339e-13 rel_err(sum(Gc'*y),sum(FDGc'*y)) = rel_err(3.34447607e+03,3.34447607e+03) = 3.22588066e-13 Congradulations! All of the computed errors were within the specified error tolerance! Successful end of testing of the nlp ************************************ *** MoochoSolver::solve_nlp() *** ************************************ *** Starting iterations ... (0) 1: "EvalNewPoint" x is not updated for any k so set x_k = nlp.xinit() ... ||x_k||inf = 1.0000000000e-01 Updating the decomposition ... DecompositionSystemVarReductPerm object currently does not have a basis so we must select one ... The NLP will attempt to select a basis (k = 0)... **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Must allocate a new matrix object for D = -inv(C)*N since one has not been allocated yet ... Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... Must allocate a new basis matrix object for C since one has not been allocated yet ... Allocated a new basis matrix object C of type 'AbstractLinAlgPack::MatrixOpNonsingAggr' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Using a direct sparse solver to set a new basis ... Using LAPACK xGETRF to analyze and factor a new matrix ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 1.5025000000e+01 ||Gf_k||inf = 1.0000000000e-01 ||Gf_k(var_dep)_k||inf = 1.0000000000e-01 ||Gf_k(var_indep)_k||inf = 1.0000000000e-01 ||c_k||inf = 1.1997308452e+02 Gf(var_indep)_k = 5 0.1:1 0.1:2 0.1:3 0.1:4 0.1:5 (0) 2: "QuasiNormalStep" ||py|| = 4.7998936932e-03 ||Ypy||2 = 1.1999603325e+00 (0) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 4.0008087749e-05 num_basis_k was updated so the basis changed so we will skip this check reset min ||py||/||c|| to current value + 1 (0) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 1.3784529074e-11 / (1.1997308452e+02 + 2.2250738585e-308) = 1.1489684648e-13 num_basis_k was updated so the basis changed so we will skip this check reset min ||R*py+c||/||c|| to current value + epsilon(2.2204460493e-16) (0) 3: "ReducedGradient" ||rGf||inf = 1.0809594644e+01 rGf_k = 5 -10.8086:1 -10.8091:2 -10.8091:3 -10.8091:4 -10.8096:5 (0) 4.-1: "CheckSkipBFGSUpdate" (0) 4: "ReducedHessian" Initializing rHL = eye(n-r) (k = 0)... ||rHL_k||inf = 1.0000000000e+00 cond_inf(rHL_k) = 1.0000000000e+00 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 1:1:1 0:1:2 1:1:3 0:1:4 0:1:5 0:2:1 1:2:2 0:2:3 1:2:4 0:2:5 0:3:1 0:3:2 1:3:3 0:3:4 1:3:5 0:4:1 0:4:2 0:4:3 1:4:4 0:4:5 0:5:1 0:5:2 0:5:3 0:5:4 1:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 1:1:1 0:1:2 0:1:3 0:1:4 0:1:5 0:2:1 1:2:2 0:2:3 0:2:4 0:2:5 1:3:1 0:3:2 1:3:3 0:3:4 0:3:5 0:4:1 1:4:2 0:4:3 1:4:4 0:4:5 0:5:1 0:5:2 1:5:3 0:5:4 1:5:5 (0) 5.-1: "SetDBoundsStd" (0) 5: "TangentialStep" qp_grad_k = 5 -10.8086:1 -10.8091:2 -10.8091:3 -10.8091:4 -10.8096:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 5.2360290589e-01 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 1.0809594644e+01 nu_k.nz() = 0 max(|nu_k(i)|) = 0.0000000000e+00 ||Zpz_k||2 = 1.1032346914e+02 pz_k = 5 10.8086:1 10.8091:2 10.8091:3 10.8091:4 10.8096:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 0:5 Zpz(var_indep)_k = 5 10.8086:1 10.8091:2 10.8091:3 10.8091:4 10.8096:5 (0) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-1.3207213101e-12)/(1.1999603325e+00 * 1.1032346914e+02 + 2.2250738585e-308) = -9.9764581665e-15 ||d_k||inf = 1.0285991738e+01 (0) 7: "CalcReducedGradLagrangian" ||rGL_k||inf = 1.0809594644e+01 rGL_k = 5 -10.8086:1 -10.8091:2 -10.8091:3 -10.8091:4 -10.8096:5 (0) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.1000000000e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 9.8269042215e+00 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 1.1997308452e+02 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = -0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 9.3509015798e+00 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 0) :-( (0) 9.-1: "LineSearchFullStep" f_k = 1.5025000000e+01 ||c_k||inf = 1.1997308452e+02 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 1.0385991738e+01 f_kp1 = 5.5154949366e+03 ||c_kp1||inf = 2.4039402261e+05 (0) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 1.1792252057e+02 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- Filter is empty. Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 5.5154949366e+03 2.3625283841e+05 failed Fraction Reduction (! Switch Cond )| |5.0000000000e-01 1.2436714997e+03 3.3614573874e+04 failed Fraction Reduction (! Switch Cond )| |2.5000000000e-01 2.4895113274e+02 5.1562325845e+03 failed Fraction Reduction (! Switch Cond )| |1.2500000000e-01 3.6888787086e+01 8.1127274965e+02 failed Fraction Reduction (! Switch Cond )| |6.2500000000e-02 2.1820737219e+00 6.8472167804e+01 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 2.1820737219e+00 - 1.0000000000e-05*6.8472167804e+01 = 2.1813890002e+00 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*6.8472167804e+01 = 6.8471483083e+01 (1) 1: "EvalNewPoint" ||x_k||inf = 7.4287448361e-01 ||x(var_dep)_k||inf = 2.3136269747e-02 ||x(var_indep)_k||inf = 7.4287448361e-01 x(var_indep)_k = 5 0.742812:1 0.742843:2 0.742843:3 0.742843:4 0.742874:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 2.1820737219e+00 ||Gf_k||inf = 7.4287448361e-01 ||Gf_k(var_dep)_k||inf = 2.3136269747e-02 ||Gf_k(var_indep)_k||inf = 7.4287448361e-01 ||c_k||inf = 6.9682547090e+01 Gf(var_indep)_k = 5 0.742812:1 0.742843:2 0.742843:3 0.742843:4 0.742874:5 (1) 2: "QuasiNormalStep" ||py|| = 1.6259405998e-02 ||Ypy||2 = 1.0621477516e+00 (1) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 2.3333541435e-04 (1) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 6.8212102633e-13 / (6.9682547090e+01 + 2.2250738585e-308) = 9.7889795195e-15 (1) 3: "ReducedGradient" ||rGf||inf = 3.7462461296e-01 rGf_k = 5 0.374625:1 0.374464:2 0.374464:3 0.374464:4 0.374303:5 (1) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(2.4169862058e+01+6.4588832268e+03)) * (1.1032346914e+02/1.1999603325e+00) = 1.1418557184e+01 ratio > 1 Perform BFGS update if you can ... (1) 4: "ReducedHessian" Performing Secant update ... ||y_bfgs||inf = 1.1183897541e+01 ||s_bfgs||inf = 6.7559966523e-01 y_bfgs = 5 11.1832:1 11.1836:2 11.1836:3 11.1836:4 11.1839:5 s_bfgs = 5 0.675537:1 0.675568:2 0.675568:3 0.675568:4 0.6756:5 Rescaling the initial identity matrix before the update as: Iscale = (y'*y)/(y'*s) = (6.2535947673e+02)/(3.7776268532e+01) = 1.6554294562e+01 B = Iscale * eye(n-r) ... B after rescaling = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 16.5543:1:1 0:1:2 1:1:3 0:1:4 0:1:5 0:2:1 16.5543:2:2 0:2:3 1:2:4 0:2:5 0:3:1 0:3:2 16.5543:3:3 0:3:4 1:3:5 0:4:1 0:4:2 0:4:3 16.5543:4:4 0:4:5 0:5:1 0:5:2 0:5:3 0:5:4 16.5543:5:5 Considering the dampened update ... s_bfgs'*y_bfgs = 3.7776268532e+01 >= s_bfgs' * B * s_bfgs = 3.7776268535e+01 Perform the undamped update ... B after the BFGS update = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 16.5544:1:1 0:1:2 1:1:3 0:1:4 0:1:5 5.27915e-05:2:1 16.5543:2:2 0:2:3 1:2:4 0:2:5 5.27878e-05:3:1 1.1783e-08:3:2 16.5543:3:3 0:3:4 1:3:5 5.27841e-05:4:1 8.12156e-09:4:2 4.46017e-09:4:3 16.5543:4:4 0:4:5 -4.02538e-09:5:1 -5.27841e-05:5:2 -5.27878e-05:5:3 -5.27914e-05:5:4 16.5542:5:5 ||rHL_k||inf = 1.6554558493e+01 cond_inf(rHL_k) = 1.0000318885e+00 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 16.5544:1:1 0:1:2 4.0687:1:3 2.85463e-09:1:4 1.95474e-09:1:5 5.27915e-05:2:1 16.5543:2:2 0:2:3 4.0687:2:4 1.05485e-09:2:5 5.27878e-05:3:1 1.1783e-08:3:2 16.5543:3:3 0:3:4 4.0687:3:5 5.27841e-05:4:1 8.12156e-09:4:2 4.46017e-09:4:3 16.5543:4:4 0:4:5 -4.02538e-09:5:1 -5.27841e-05:5:2 -5.27878e-05:5:3 -5.27914e-05:5:4 16.5542:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 4.06871:1:1 1.2975e-05:1:2 1.29741e-05:1:3 1.29732e-05:1:4 -9.8935e-10:1:5 0:2:1 4.0687:2:2 2.85463e-09:2:3 1.95474e-09:2:4 -1.29732e-05:2:5 16.5543:3:1 0:3:2 4.0687:3:3 1.05485e-09:3:4 -1.29741e-05:3:5 1.1783e-08:4:1 16.5543:4:2 0:4:3 4.0687:4:4 -1.2975e-05:4:5 8.12156e-09:5:1 4.46017e-09:5:2 16.5543:5:3 0:5:4 4.06868:5:5 (1) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -0.742802:1 -0.742833:2 -0.742833:3 -0.742833:4 -0.742864:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (1) 5: "TangentialStep" qp_grad_k = 5 0.374625:1 0.374464:2 0.374464:3 0.374464:4 0.374303:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 2.5901993894e-01 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 2.2629695306e-02 nu_k.nz() = 0 max(|nu_k(i)|) = 0.0000000000e+00 ||Zpz_k||2 = 6.0331754008e-02 pz_k = 5 -0.0226297:1 -0.0226203:2 -0.0226203:3 -0.0226203:4 -0.022611:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 0:5 Zpz(var_indep)_k = 5 -0.0226297:1 -0.0226203:2 -0.0226203:3 -0.0226203:4 -0.022611:5 (1) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-1.9637069748e-15)/(1.0621477516e+00 * 6.0331754008e-02 + 2.2250738585e-308) = -3.0644024221e-14 ||d_k||inf = 2.8163092161e-01 ||d(var_dep)_k||inf = 1.5659094503e-02 ||d(var_indep)_k||inf = 2.8163092161e-01 d(var_indep)_k = 5 -0.281457:1 -0.281544:2 -0.281544:3 -0.281544:4 -0.281631:5 (1) 7: "CalcReducedGradLagrangian" ||rGL_k||inf = 3.7462461296e-01 rGL_k = 5 0.374625:1 0.374464:2 0.374464:3 0.374464:4 0.374303:5 (1) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.7428744836e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.1494640979e-01 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 6.9682547090e+01 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = -0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 1.6158990464e-01 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 1) :-( (1) 9.-1: "LineSearchFullStep" f_k = 2.1820737219e+00 ||c_k||inf = 6.9682547090e+01 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 4.6135478069e-01 f_kp1 = 6.1576438692e-01 ||c_kp1||inf = 1.5830011682e+01 (1) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 6.8472167804e+01 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | 2.1813890002e+00 6.8471483083e+01| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 6.1576438692e-01 1.5552264182e+01 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 6.1576438692e-01 - 1.0000000000e-05*1.5552264182e+01 = 6.1560886428e-01 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*1.5552264182e+01 = 1.5552108660e+01 Removing from the filter the redundant point: f_with_boundary = 2.1813890002e+00 theta_with_boundary = 6.8471483083e+01 iteration added = 0 (2) 1: "EvalNewPoint" ||x_k||inf = 4.6135478069e-01 ||x(var_dep)_k||inf = 7.4771752444e-03 ||x(var_indep)_k||inf = 4.6135478069e-01 x(var_indep)_k = 5 0.461355:1 0.461299:2 0.461299:3 0.461299:4 0.461244:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 6.1576438692e-01 ||Gf_k||inf = 4.6135478069e-01 ||Gf_k(var_dep)_k||inf = 7.4771752444e-03 ||Gf_k(var_indep)_k||inf = 4.6135478069e-01 ||c_k||inf = 1.5830011682e+01 Gf(var_indep)_k = 5 0.461355:1 0.461299:2 0.461299:3 0.461299:4 0.461244:5 (2) 2: "QuasiNormalStep" ||py|| = 7.0350662441e-03 ||Ypy||2 = 3.9705009790e-01 (2) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 4.4441320608e-04 (2) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 2.3092638912e-14 / (1.5830011682e+01 + 2.2250738585e-308) = 1.4587884946e-15 (2) 3: "ReducedGradient" ||rGf||inf = 4.1554627380e-01 rGf_k = 5 0.415546:1 0.415437:2 0.415437:3 0.415437:4 0.415329:5 (2) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(8.3732647964e-01+3.7503756046e+03)) * (6.0331754008e-02/1.0621477516e+00) = 9.2741722769e-03 ratio < 1 Skipping BFGS update ... rHL_k = rHL_km1 (2) 4: "ReducedHessian" The matrix rHL_k has already been updated so leave it (2) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -0.461345:1 -0.461289:2 -0.461289:3 -0.461289:4 -0.461234:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (2) 5: "TangentialStep" qp_grad_k = 5 0.415546:1 0.415437:2 0.415437:3 0.415437:4 0.415329:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 4.3200066153e-02 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 2.5101622321e-02 nu_k.nz() = 0 max(|nu_k(i)|) = 0.0000000000e+00 ||Zpz_k||2 = 5.7849459762e-02 pz_k = 5 -0.0251016:1 -0.0250955:2 -0.0250955:3 -0.0250955:4 -0.0250893:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 0:5 Zpz(var_indep)_k = 5 -0.0251016:1 -0.0250955:2 -0.0250955:3 -0.0250955:4 -0.0250893:5 (2) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-3.2656169435e-16)/(3.9705009790e-01 * 5.7849459762e-02 + 2.2250738585e-308) = -1.4217414516e-14 ||d_k||inf = 6.8289342521e-02 ||d(var_dep)_k||inf = 6.7783028666e-03 ||d(var_indep)_k||inf = 6.8289342521e-02 d(var_indep)_k = 5 -0.0682077:1 -0.0682485:2 -0.0682485:3 -0.0682485:4 -0.0682893:5 (2) 7: "CalcReducedGradLagrangian" ||rGL_k||inf = 4.1554627380e-01 rGL_k = 5 0.415546:1 0.415437:2 0.415437:3 0.415437:4 0.415329:5 (2) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.4613547807e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.8435687164e-01 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 1.5830011682e+01 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = -0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 4.6733716607e-02 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 2) :-( (2) 9.-1: "LineSearchFullStep" f_k = 6.1576438692e-01 ||c_k||inf = 1.5830011682e+01 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 3.9314710830e-01 f_kp1 = 3.8695300275e-01 ||c_kp1||inf = 1.3445285133e+00 (2) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 1.5552264182e+01 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | 6.1560886428e-01 1.5552108660e+01| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 3.8695300275e-01 1.3201800917e+00 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 3.8695300275e-01 - 1.0000000000e-05*1.3201800917e+00 = 3.8693980095e-01 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*1.3201800917e+00 = 1.3201668899e+00 Removing from the filter the redundant point: f_with_boundary = 6.1560886428e-01 theta_with_boundary = 1.5552108660e+01 iteration added = 1 (3) 1: "EvalNewPoint" ||x_k||inf = 3.9314710830e-01 ||x(var_dep)_k||inf = 6.9887237779e-04 ||x(var_indep)_k||inf = 3.9314710830e-01 x(var_indep)_k = 5 0.393147:1 0.393051:2 0.393051:3 0.393051:4 0.392954:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 3.8695300275e-01 ||Gf_k||inf = 3.9314710830e-01 ||Gf_k(var_dep)_k||inf = 6.9887237779e-04 ||Gf_k(var_indep)_k||inf = 3.9314710830e-01 ||c_k||inf = 1.3445285133e+00 Gf(var_indep)_k = 5 0.393147:1 0.393051:2 0.393051:3 0.393051:4 0.392954:5 (3) 2: "QuasiNormalStep" ||py|| = 6.9845040071e-04 ||Ypy||2 = 3.8222397636e-02 (3) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 5.1947607941e-04 (3) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 1.1102230246e-15 / (1.3445285133e+00 + 2.2250738585e-308) = 8.2573408721e-16 (3) 3: "ReducedGradient" ||rGf||inf = 3.9272839189e-01 rGf_k = 5 0.392728:1 0.392631:2 0.392631:3 0.392631:4 0.392533:5 (3) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(9.2894644415e-01+8.5183273306e+02)) * (5.7849459762e-02/3.9705009790e-01) = 4.9893062465e-02 ratio < 1 Skipping BFGS update ... rHL_k = rHL_km1 (3) 4: "ReducedHessian" The matrix rHL_k has already been updated so leave it (3) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -0.393137:1 -0.393041:2 -0.393041:3 -0.393041:4 -0.392944:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (3) 5: "TangentialStep" qp_grad_k = 5 0.392728:1 0.392631:2 0.392631:3 0.392631:4 0.392533:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 4.2053082371e-04 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 2.3723277979e-02 nu_k.nz() = 0 max(|nu_k(i)|) = 0.0000000000e+00 ||Zpz_k||2 = 5.3050520400e-02 pz_k = 5 -0.0237233:1 -0.0237178:2 -0.0237178:3 -0.0237178:4 -0.0237123:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 0:5 Zpz(var_indep)_k = 5 -0.0237233:1 -0.0237178:2 -0.0237178:3 -0.0237178:4 -0.0237123:5 (3) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-9.2326591251e-19)/(3.8222397636e-02 * 5.3050520400e-02 + 2.2250738585e-308) = -4.5532262059e-16 ||d_k||inf = 2.4141742846e-02 ||d(var_dep)_k||inf = 6.7465659398e-04 ||d(var_indep)_k||inf = 2.4141742846e-02 d(var_indep)_k = 5 -0.0241417:1 -0.0241373:2 -0.0241373:3 -0.0241373:4 -0.0241328:5 (3) 7: "CalcReducedGradLagrangian" ||rGL_k||inf = 3.9272839189e-01 rGL_k = 5 0.392728:1 0.392631:2 0.392631:3 0.392631:4 0.392533:5 (3) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.3931471083e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.8190015939e-01 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 1.3445285133e+00 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = -0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 1.7328925784e-02 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 3) :-( (3) 9.-1: "LineSearchFullStep" f_k = 3.8695300275e-01 ||c_k||inf = 1.3445285133e+00 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 3.6900536545e-01 f_kp1 = 3.4024364074e-01 ||c_kp1||inf = 4.4987367193e-02 (3) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 1.3201800917e+00 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | 3.8693980095e-01 1.3201668899e+00| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 3.4024364074e-01 4.4177631526e-02 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 3.4024364074e-01 - 1.0000000000e-05*4.4177631526e-02 = 3.4024319897e-01 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*4.4177631526e-02 = 4.4177189749e-02 Removing from the filter the redundant point: f_with_boundary = 3.8693980095e-01 theta_with_boundary = 1.3201668899e+00 iteration added = 2 (4) 1: "EvalNewPoint" ||x_k||inf = 3.6900536545e-01 ||x(var_dep)_k||inf = 2.4215783810e-05 ||x(var_indep)_k||inf = 3.6900536545e-01 x(var_indep)_k = 5 0.369005:1 0.368913:2 0.368913:3 0.368913:4 0.368821:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 3.4024364074e-01 ||Gf_k||inf = 3.6900536545e-01 ||Gf_k(var_dep)_k||inf = 2.4215783810e-05 ||Gf_k(var_indep)_k||inf = 3.6900536545e-01 ||c_k||inf = 4.4987367193e-02 Gf(var_indep)_k = 5 0.369005:1 0.368913:2 0.368913:3 0.368913:4 0.368821:5 (4) 2: "QuasiNormalStep" ||py|| = 2.4215765620e-05 ||Ypy||2 = 1.3249505872e-03 (4) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 5.3827923550e-04 (4) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 4.1633363423e-17 / (4.4987367193e-02 + 2.2250738585e-308) = 9.2544565333e-16 (4) 3: "ReducedGradient" ||rGf||inf = 3.6900485363e-01 rGf_k = 5 0.369005:1 0.368913:2 0.368913:3 0.368913:4 0.368821:5 (4) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(8.7794944328e-01+7.2309266475e+01)) * (5.3050520400e-02/3.8222397636e-02) = 1.6223856969e+00 ratio > 1 Perform BFGS update if you can ... (4) 4: "ReducedHessian" Performing Secant update ... ||y_bfgs||inf = 2.3723538254e-02 ||s_bfgs||inf = 2.3723277979e-02 y_bfgs = 5 -0.0237235:1 -0.023718:2 -0.023718:3 -0.023718:4 -0.0237125:5 s_bfgs = 5 -0.0237233:1 -0.0237178:2 -0.0237178:3 -0.0237178:4 -0.0237123:5 Considering the dampened update ... s_bfgs'*y_bfgs = 2.8126935606e-03 < s_bfgs' * B * s_bfgs = 4.6561647149e-02 Dampen the update ... theta = 8.5143334100e-01 y_bfgs = theta*y_bfgs + (1-theta)*B*s_bfgs ... ||y_bfgs||inf = 7.8545356511e-02 y_bfgs = 5 -0.0785454:1 -0.0785262:2 -0.0785262:3 -0.0785262:4 -0.078507:5 B after the BFGS update = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.9044:1:1 0:1:2 4.0687:1:3 2.85463e-09:1:4 1.95474e-09:1:5 -2.64929:2:1 13.9056:2:2 0:2:3 4.0687:2:4 1.05485e-09:2:5 -2.64929:3:1 -2.64869:3:2 13.9056:3:3 0:3:4 4.0687:3:5 -2.64929:4:1 -2.64869:4:2 -2.64869:4:3 13.9056:4:4 0:4:5 -2.64869:5:1 -2.64808:5:2 -2.64808:5:3 -2.64808:5:4 13.9068:5:5 ||rHL_k||inf = 2.4499747866e+01 cond_inf(rHL_k) = 7.4011738690e+00 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.9044:1:1 0:1:2 3.66071:1:3 -0.861437:1:4 -0.861437:1:5 -2.64929:2:1 13.9056:2:2 0:2:3 3.55791:2:4 -1.0949:2:5 -2.64929:3:1 -2.64869:3:2 13.9056:3:3 0:3:4 3.38525:3:5 -2.64929:4:1 -2.64869:4:2 -2.64869:4:3 13.9056:4:4 0:4:5 -2.64869:5:1 -2.64808:5:2 -2.64808:5:3 -2.64808:5:4 13.9068:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 3.72886:1:1 -0.710484:1:2 -0.710484:1:3 -0.710484:1:4 -0.710321:1:5 0:2:1 3.66071:2:2 -0.861437:2:3 -0.861437:2:4 -0.86124:2:5 13.9056:3:1 0:3:2 3.55791:3:3 -1.0949:3:4 -1.09465:3:5 -2.64869:4:1 13.9056:4:2 0:4:3 3.38525:4:4 -1.50452:4:5 -2.64869:5:1 -2.64869:5:2 13.9056:5:3 0:5:4 3.03294:5:5 (4) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -0.368995:1 -0.368903:2 -0.368903:3 -0.368903:4 -0.368811:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (4) 5: "TangentialStep" qp_grad_k = 5 0.369005:1 0.368913:2 0.368913:3 0.368913:4 0.368821:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 5.1410422885e-07 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 1.1145113136e-01 nu_k.nz() = 0 max(|nu_k(i)|) = 0.0000000000e+00 ||Zpz_k||2 = 2.4915426691e-01 pz_k = 5 -0.111451:1 -0.111425:2 -0.111425:3 -0.111425:4 -0.111399:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 0:5 Zpz(var_indep)_k = 5 -0.111451:1 -0.111425:2 -0.111425:3 -0.111425:4 -0.111399:5 (4) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-1.0164395367e-20)/(1.3249505872e-03 * 2.4915426691e-01 + 2.2250738585e-308) = -3.0790272924e-17 ||d_k||inf = 1.1145164318e-01 ||d(var_dep)_k||inf = 2.0274247521e-05 ||d(var_indep)_k||inf = 1.1145164318e-01 d(var_indep)_k = 5 -0.111452:1 -0.111426:2 -0.111426:3 -0.111426:4 -0.1114:5 (4) 7: "CalcReducedGradLagrangian" ||rGL_k||inf = 3.6900485363e-01 rGL_k = 5 0.369005:1 0.368913:2 0.368913:3 0.368913:4 0.368821:5 (4) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.3690053654e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.6954229906e-01 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 4.4987367193e-02 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = -0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 8.1410669372e-02 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 4) :-( (4) 9.-1: "LineSearchFullStep" f_k = 3.4024364074e-01 ||c_k||inf = 4.4987367193e-02 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 2.5755372227e-01 f_kp1 = 1.6574989579e-01 ||c_kp1||inf = 6.1791102848e-03 (4) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 4.4177631526e-02 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | 3.4024319897e-01 4.4177189749e-02| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 1.6574989579e-01 6.0687208500e-03 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 1.6574989579e-01 - 1.0000000000e-05*6.0687208500e-03 = 1.6574983511e-01 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*6.0687208500e-03 = 6.0686601628e-03 Removing from the filter the redundant point: f_with_boundary = 3.4024319897e-01 theta_with_boundary = 4.4177189749e-02 iteration added = 3 (5) 1: "EvalNewPoint" ||x_k||inf = 2.5755372227e-01 ||x(var_dep)_k||inf = 3.9415362886e-06 ||x(var_indep)_k||inf = 2.5755372227e-01 x(var_indep)_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257422:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 1.6574989579e-01 ||Gf_k||inf = 2.5755372227e-01 ||Gf_k(var_dep)_k||inf = 3.9415362886e-06 ||Gf_k(var_indep)_k||inf = 2.5755372227e-01 ||c_k||inf = 6.1791102848e-03 Gf(var_indep)_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257422:5 (5) 2: "QuasiNormalStep" ||py|| = 3.9415361956e-06 ||Ypy||2 = 2.1569444240e-04 (5) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 6.3788086213e-04 (5) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 6.0715321659e-18 / (6.1791102848e-03 + 2.2250738585e-308) = 9.8259003094e-16 (5) 3: "ReducedGradient" ||rGf||inf = 2.5755370750e-01 rGf_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257422:5 (5) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(8.2491431895e-01+2.4197092553e+00)) * (2.4915426691e-01/1.3249505872e-03) = 1.0439663191e+03 ratio > 1 Perform BFGS update if you can ... (5) 4: "ReducedHessian" Performing Secant update ... ||y_bfgs||inf = 1.1145114613e-01 ||s_bfgs||inf = 1.1145113136e-01 y_bfgs = 5 -0.111451:1 -0.111425:2 -0.111425:3 -0.111425:4 -0.111399:5 s_bfgs = 5 -0.111451:1 -0.111425:2 -0.111425:3 -0.111425:4 -0.111399:5 Considering the dampened update ... s_bfgs'*y_bfgs = 6.2077810439e-02 >= s_bfgs' * B * s_bfgs = 2.0553084537e-01 Perform the undamped update ... B after the BFGS update = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.442:1:1 0:1:2 3.66071:1:3 -0.861437:1:4 -0.861437:1:5 -3.11158:2:1 13.4434:2:2 0:2:3 3.55791:2:4 -1.0949:2:5 -3.11158:3:1 -3.11086:3:2 13.4434:3:3 0:3:4 3.38525:3:5 -3.11158:4:1 -3.11086:4:2 -3.11086:4:3 13.4434:4:4 0:4:5 -3.11086:5:1 -3.11013:5:2 -3.11013:5:3 -3.11013:5:4 13.4449:5:5 ||rHL_k||inf = 2.5886144627e+01 cond_inf(rHL_k) = 2.5891815803e+01 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.442:1:1 0:1:2 3.56695:1:3 -1.07406:1:4 -1.07406:1:5 -3.11158:2:1 13.4434:2:2 0:2:3 3.4014:2:4 -1.4655:2:5 -3.11158:3:1 -3.11086:3:2 13.4434:3:3 0:3:4 3.0695:3:5 -3.11158:4:1 -3.11086:4:2 -3.11086:4:3 13.4434:4:4 0:4:5 -3.11086:5:1 -3.11013:5:2 -3.11013:5:3 -3.11013:5:4 13.4449:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 3.66633:1:1 -0.848692:1:2 -0.848692:1:3 -0.848692:1:4 -0.848494:1:5 0:2:1 3.56695:2:2 -1.07406:2:3 -1.07406:2:4 -1.07381:2:5 13.4434:3:1 0:3:2 3.4014:3:3 -1.4655:3:4 -1.46516:3:5 -3.11086:4:1 13.4434:4:2 0:4:3 3.0695:4:4 -2.3231:4:5 -3.11086:5:1 -3.11086:5:2 13.4434:5:3 0:5:4 2.00709:5:5 (5) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -0.257544:1 -0.257478:2 -0.257478:3 -0.257478:4 -0.257412:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (5) 5: "TangentialStep" qp_grad_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257422:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 1.4826932622e-08 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 2.5753641905e-01 nu_k.nz() = 1 max(|nu_k(i)|) = 6.2413617790e-05 ||Zpz_k||2 = 5.7573213689e-01 pz_k = 5 -0.257536:1 -0.257476:2 -0.257476:3 -0.257476:4 -0.257412:5 nu_k(var_indep) = 5 0:1 0:2 0:3 0:4 -6.24136e-05:5 Zpz(var_indep)_k = 5 -0.257536:1 -0.257476:2 -0.257476:3 -0.257476:4 -0.257412:5 (5) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (4.9217246447e-22)/(2.1569444240e-04 * 5.7573213689e-01 + 2.2250738585e-308) = 3.9633085606e-18 ||d_k||inf = 2.5753643382e-01 ||d(var_dep)_k||inf = 2.3277613186e-06 ||d(var_indep)_k||inf = 2.5753643382e-01 d(var_indep)_k = 5 -0.257536:1 -0.257476:2 -0.257476:3 -0.257476:4 -0.257412:5 (5) 7: "CalcReducedGradLagrangian" rGL_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257359:5 ||rGL_k||inf = 2.5755370750e-01 rGL_k = 5 0.257554:1 0.257488:2 0.257488:3 0.257488:4 0.257359:5 (5) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.2575537223e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.0480533192e-01 > opt_tol = 1.0000000000e-02 feas_kkt_err_k = 6.1791102848e-03 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = 1.6066000963e-05 > comp_tol = 1.0000000000e-06 step_err = 2.0479159598e-01 > step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 5) :-( (5) 9.-1: "LineSearchFullStep" f_k = 1.6574989579e-01 ||c_k||inf = 6.1791102848e-03 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 1.7288455117e-05 f_kp1 = 4.3078479209e-09 ||c_kp1||inf = 1.6001110173e-03 (5) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 6.0687208500e-03 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | 1.6574983511e-01 6.0686601628e-03| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 4.3078479209e-09 1.5716730031e-03 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 4.3078479209e-09 - 1.0000000000e-05*1.5716730031e-03 = -1.1408882110e-08 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*1.5716730031e-03 = 1.5716572864e-03 Removing from the filter the redundant point: f_with_boundary = 1.6574983511e-01 theta_with_boundary = 6.0686601628e-03 iteration added = 4 (6) 1: "EvalNewPoint" ||x_k||inf = 1.7288455117e-05 ||x(var_dep)_k||inf = 1.6137749700e-06 ||x(var_indep)_k||inf = 1.7288455117e-05 x(var_indep)_k = 5 1.72885e-05:1 1.17603e-05:2 1.176e-05:3 1.17596e-05:4 1e-05:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 4.3078479209e-09 ||Gf_k||inf = 1.7288455117e-05 ||Gf_k(var_dep)_k||inf = 1.6137749700e-06 ||Gf_k(var_indep)_k||inf = 1.7288455117e-05 ||c_k||inf = 1.6001110173e-03 Gf(var_indep)_k = 5 1.72885e-05:1 1.17603e-05:2 1.176e-05:3 1.17596e-05:4 1e-05:5 (6) 2: "QuasiNormalStep" ||py|| = 1.6137749599e-06 ||Ypy||2 = 8.8328450816e-05 (6) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 1.0085393716e-03 (6) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 1.3010426070e-18 / (1.6001110173e-03 + 2.2250738585e-308) = 8.1309521210e-16 (6) 3: "ReducedGradient" ||rGf||inf = 1.7285338958e-05 rGf_k = 5 1.72853e-05:1 1.17572e-05:2 1.17568e-05:3 1.17565e-05:4 9.99687e-06:5 (6) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(5.7573220998e-01+3.3239761380e-01)) * (5.7573213689e-01/2.1569444240e-04) = 2.8009641333e+04 ratio > 1 Perform BFGS update if you can ... (6) 4: "ReducedHessian" Performing Secant update ... ||y_bfgs||inf = 2.5753642216e-01 ||s_bfgs||inf = 2.5753641905e-01 y_bfgs = 5 -0.257536:1 -0.257476:2 -0.257476:3 -0.257476:4 -0.257412:5 s_bfgs = 5 -0.257536:1 -0.257476:2 -0.257476:3 -0.257476:4 -0.257412:5 Considering the dampened update ... s_bfgs'*y_bfgs = 3.3146748967e-01 >= s_bfgs' * B * s_bfgs = 3.3146752990e-01 Perform the undamped update ... B after the BFGS update = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.442:1:1 0:1:2 3.56695:1:3 -1.07406:1:4 -1.07406:1:5 -3.11161:2:1 13.4434:2:2 0:2:3 3.4014:2:4 -1.4655:2:5 -3.11161:3:1 -3.11088:3:2 13.4434:3:3 0:3:4 3.0695:3:5 -3.11161:4:1 -3.11088:4:2 -3.11088:4:3 13.4434:4:4 0:4:5 -3.11083:5:1 -3.1101:5:2 -3.1101:5:3 -3.1101:5:4 13.445:5:5 ||rHL_k||inf = 2.5886103889e+01 cond_inf(rHL_k) = 2.5891882950e+01 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 13.442:1:1 0:1:2 3.56695:1:3 -1.07407:1:4 -1.07407:1:5 -3.11161:2:1 13.4434:2:2 0:2:3 3.4014:2:4 -1.46552:2:5 -3.11161:3:1 -3.11088:3:2 13.4434:3:3 0:3:4 3.06949:3:5 -3.11161:4:1 -3.11088:4:2 -3.11088:4:3 13.4434:4:4 0:4:5 -3.11083:5:1 -3.1101:5:2 -3.1101:5:3 -3.1101:5:4 13.445:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 3.66633:1:1 -0.848699:1:2 -0.848699:1:3 -0.848699:1:4 -0.848487:1:5 0:2:1 3.56695:2:2 -1.07407:2:3 -1.07407:2:4 -1.07381:2:5 13.4434:3:1 0:3:2 3.4014:3:3 -1.46552:3:4 -1.46515:3:5 -3.11088:4:1 13.4434:4:2 0:4:3 3.06949:4:4 -2.32311:4:5 -3.11088:5:1 -3.11088:5:2 13.4434:5:3 0:5:4 2.0071:5:5 (6) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -7.28846e-06:1 -1.76034e-06:2 -1.75996e-06:3 -1.75958e-06:4 -1.00001e-17:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (6) 5: "TangentialStep" qp_grad_k = 5 1.72853e-05:1 1.17572e-05:2 1.17568e-05:3 1.17565e-05:4 9.99687e-06:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 3.1252363232e-09 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 2.5052443219e-06 nu_k.nz() = 4 max(|nu_k(i)|) = 3.4224117743e-05 ||Zpz_k||2 = 3.9415350433e-06 pz_k = 5 -2.50524e-06:1 -1.75722e-06:2 -1.75684e-06:3 -1.75645e-06:4 3.12524e-09:5 nu_k(var_indep) = 5 0:1 -6.8492e-06:2 -6.85516e-06:3 -6.86113e-06:4 -3.42241e-05:5 Zpz(var_indep)_k = 5 -2.50524e-06:1 -1.75722e-06:2 -1.75684e-06:3 -1.75645e-06:4 3.12524e-09:5 (6) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (1.7579272235e-28)/(8.8328450816e-05 * 3.9415350433e-06 + 2.2250738585e-308) = 5.0493431509e-19 ||d_k||inf = 2.5083604808e-06 ||d(var_dep)_k||inf = 1.6137749700e-06 ||d(var_indep)_k||inf = 2.5083604808e-06 d(var_indep)_k = 5 -2.50836e-06:1 -1.76034e-06:2 -1.75996e-06:3 -1.75958e-06:4 -1.00001e-17:5 (6) 7: "CalcReducedGradLagrangian" rGL_k = 5 1.72853e-05:1 4.90802e-06:2 4.90168e-06:3 4.89533e-06:4 -2.42272e-05:5 ||rGL_k||inf = 2.4227242979e-05 rGL_k = 5 1.72853e-05:1 4.90802e-06:2 4.90168e-06:3 4.89533e-06:4 -2.42272e-05:5 (6) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.0000172885e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 2.4226824135e-05 < opt_tol = 1.0000000000e-02 feas_kkt_err_k = 1.6001110173e-03 > feas_tol = 1.0000000000e-07 comp_kkt_err_k = 1.2072668757e-11 < comp_tol = 1.0000000000e-06 step_err = 2.5083171159e-06 < step_tol = 1.0000000000e-02 Have not found the solution yet, have to keep going (k = 6) :-( (6) 9.-1: "LineSearchFullStep" f_k = 4.3078479209e-09 ||c_k||inf = 1.6001110173e-03 alpha_k = 1.0000000000e+00 ||x_kp1||inf = 1.4780094636e-05 f_kp1 = 3.0922559878e-10 ||c_kp1||inf = 7.9473675342e-09 (6) 9: "LineSearch" theta_k = ||c_k||1/c_k.dim() = 1.5716730031e-03 f_min==F_MIN_UNBOUNDED: Setting gamma_f_used = gamma_f = 1.0000000000e-05. Beginning Filter line search method. Current Filter ----------------------------------------------------- | f_with_boundary | theta_with_boundary | ----------------------------------------------------- | -1.1408882110e-08 1.5716572864e-03| Iteration Status ---------------------------------------------------------------------------------------------------------- | alpha_k | f_kp1 | theta_kp1 | pt. status | comment | ---------------------------------------------------------------------------------------------------------- |1.0000000000e+00 3.0922559878e-10 4.8949810733e-09 accepted Fraction Reduction (! Switch Cond )| Point was accepted - augmenting the filter ... Augmenting the filter with the point: f_with_boundary = f_kp1 - gamma_f_used*theta_kp1 = 3.0922559878e-10 - 1.0000000000e-05*4.8949810733e-09 = 3.0917664897e-10 theta_with_boundary = (1-gamma_theta)*theta_kp1 = (1-1.0000000000e-05)*4.8949810733e-09 = 4.8949321235e-09 (7) 1: "EvalNewPoint" ||x_k||inf = 1.4780094636e-05 ||x(var_dep)_k||inf = 8.0843549147e-12 ||x(var_indep)_k||inf = 1.4780094636e-05 x(var_indep)_k = 5 1.47801e-05:1 1e-05:2 1e-05:3 1e-05:4 1e-05:5 Updating the decomposition ... Updating the range/null decompostion matrices ... *********************************************************** *** DecompositionSystemVarReductImp::update_decomp(...) *** ************************************************************ Warning!!! mat_rel != MATRICES_INDEP_IMPS; The decompsition matrix objects may not be independent of each other! **************************************************************** *** DecompositionSystemVarReductImp::get_basis_matrices(...) *** **************************************************************** Allocated a new explicit matrix object for D = -inv(C)*N of type 'AbstractLinAlgPack::MultiVectorMutableDense' ... End DecompositionSystemVarReductImp::get_basis_matrices(...) Updating the basis matrix C and other matices using the BasisSystem object ... Using a direct sparse solver to update basis ... Using LAPACK xGETRF to refactor the basis matrix ... End DecompositionSystemVarReductImp::update_decomp(...) Printing the updated iteration quantities ... f_k = 3.0922559878e-10 ||Gf_k||inf = 1.4780094636e-05 ||Gf_k(var_dep)_k||inf = 8.0843549147e-12 ||Gf_k(var_indep)_k||inf = 1.4780094636e-05 ||c_k||inf = 7.9473675342e-09 Gf(var_indep)_k = 5 1.47801e-05:1 1e-05:2 1e-05:3 1e-05:4 1e-05:5 (7) 2: "QuasiNormalStep" ||py|| = 8.0843549147e-12 ||Ypy||2 = 3.1177993328e-10 (7) 2.1: "CheckDecompositionFromPy" beta = ||py||/||c|| = 1.0172368246e-03 (7) 2.2: "CheckDecompositionFromRPy" beta = ||R*py_k + c_k(decomp)||inf / (||c_k(decomp)||inf + small_number) = 6.6174449004e-24 / (7.9473675342e-09 + 2.2250738585e-308) = 8.3265872278e-16 (7) 3: "ReducedGradient" ||rGf||inf = 1.4780094636e-05 rGf_k = 5 1.47801e-05:1 1e-05:2 1e-05:3 1e-05:4 1e-05:5 (7) 4.-1: "CheckSkipBFGSUpdate" ratio = (skip_bfgs_prop_const/sqrt(||rGL_km1||+||c_km1||))*(||Zpz_km1||/||Ypy_km1||) = (1.0000000000e+01/sqrt(3.0948692946e-05+8.6084094835e-02)) * (3.9415350433e-06/8.8328450816e-05) = 1.5206359932e+00 ratio > 1 Perform BFGS update if you can ... (7) 4: "ReducedHessian" Performing Secant update ... ||y_bfgs||inf = 2.5052443219e-06 ||s_bfgs||inf = 2.5052443219e-06 y_bfgs = 5 -2.50524e-06:1 -1.75722e-06:2 -1.75684e-06:3 -1.75645e-06:4 3.12524e-09:5 s_bfgs = 5 -2.50524e-06:1 -1.75722e-06:2 -1.75684e-06:3 -1.75645e-06:4 3.12524e-09:5 Considering the dampened update ... s_bfgs'*y_bfgs = 1.5535698401e-11 >= s_bfgs' * B * s_bfgs = 6.9214067476e-11 Perform the undamped update ... B after the BFGS update = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 9.52915:1:1 0:1:2 3.56695:1:3 -1.07407:1:4 -1.07407:1:5 -4.05396:2:1 13.2941:2:2 0:2:3 3.4014:2:4 -1.46552:2:5 -4.05244:3:1 -3.25975:3:2 13.295:3:3 0:3:4 3.06949:3:5 -4.05091:4:1 -3.25934:4:2 -3.25893:4:3 13.2958:4:4 0:4:5 2.93911:5:1 -1.39248:5:2 -1.3947:5:3 -1.39693:5:4 4.96462:5:5 ||rHL_k||inf = 2.4625571263e+01 cond_inf(rHL_k) = 3.1556895452e+01 rHL_k = Unfactored symmetric matrix stored as lower triangle (ignore upper nonzeros): 5 5 9.52915:1:1 0:1:2 3.40139:1:3 -1.46521:1:4 -1.4649:1:5 -4.05396:2:1 13.2941:2:2 0:2:3 3.06997:2:4 -2.32186:2:5 -4.05244:3:1 -3.25975:3:2 13.295:3:3 0:3:4 2.00916:3:5 -4.05091:4:1 -3.25934:4:2 -3.25893:4:3 13.2958:4:4 0:4:5 2.93911:5:1 -1.39248:5:2 -1.3947:5:3 -1.39693:5:4 4.96462:5:5 Matrix scaling M = scale*U'*U, scale = 1 Upper cholesky factor U (ignore lower nonzeros): 5 5 3.08693:1:1 -1.31326:1:2 -1.31277:1:3 -1.31228:1:4 0.952114:1:5 0:2:1 3.40139:2:2 -1.46521:2:3 -1.4649:2:4 -0.0417781:2:5 13.2941:3:1 0:3:2 3.06997:3:3 -2.32186:3:4 -0.0671046:3:5 -3.25975:4:1 13.295:4:2 0:4:3 2.00916:4:4 -0.181417:4:5 -3.25934:5:1 -3.25893:5:2 13.2958:5:3 0:5:4 2.00473:5:5 (7) 5.-1: "SetDBoundsStd" dl(var_indep)_k = 5 -4.78009e-06:1 0:2 0:3 0:4 0:5 du(var_indep)_k = 5 1e+50:1 1e+50:2 1e+50:3 1e+50:4 1e+50:5 (7) 5: "TangentialStep" qp_grad_k = 5 1.47801e-05:1 1e-05:2 1e-05:3 1e-05:4 1e-05:5 Determine if we can use simple bounds on pz ... m = 3000 dynamic_cast<const MatrixIdentConcat*>(&Z_k) = 0xe2c76b0 ||Ypy_k(var_indep)||inf = 7.8420208892e-20 Using simple bounds on pz ... There are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ... Calling QPKWIK to solve QP problem ... ||pz_k||inf = 1.5510400571e-06 nu_k.nz() = 4 max(|nu_k(i)|) = 1.6287853297e-05 ||Zpz_k||2 = 1.5510400571e-06 pz_k = 5 -1.55104e-06:1 3.86837e-20:2 3.86646e-20:3 3.86426e-20:4 4.74479e-35:5 nu_k(var_indep) = 5 0:1 -1.62879e-05:2 -1.62855e-05:3 -1.62831e-05:4 -5.44132e-06:5 Zpz(var_indep)_k = 5 -1.55104e-06:1 3.86837e-20:2 3.86646e-20:3 3.86426e-20:4 4.74479e-35:5 (7) 6: "CalcDFromYPYZPZ" (Ypy_k'*Zpz_k)/(||Ypy_k||2 * ||Zpz_k||2 + eps) = (-3.6810718738e-39)/(3.1177993328e-10 * 1.5510400571e-06 + 2.2250738585e-308) = -7.6120761359e-24 ||d_k||inf = 1.5510400571e-06 ||d(var_dep)_k||inf = 8.0843298368e-12 ||d(var_indep)_k||inf = 1.5510400571e-06 d(var_indep)_k = 5 -1.55104e-06:1 0:2 0:3 0:4 0:5 (7) 7: "CalcReducedGradLagrangian" rGL_k = 5 1.47801e-05:1 -6.28785e-06:2 -6.28549e-06:3 -6.28313e-06:4 4.55868e-06:5 ||rGL_k||inf = 1.4780094636e-05 rGL_k = 5 1.47801e-05:1 -6.28785e-06:2 -6.28549e-06:3 -6.28313e-06:4 4.55868e-06:5 (7) 8: "CheckConvergence" scale_opt_factor = 1.0000000000e+00 (scale_opt_error_by = SCALE_BY_ONE) scale_feas_factor = 1.0000000000e+00 (scale_feas_error_by = SCALE_BY_ONE) scale_comp_factor = 1.0000000000e+00 (scale_comp_error_by = SCALE_BY_ONE) opt_scale_factor = 1.0000147801e+00 (scale_opt_error_by_Gf = true) opt_kkt_err_k = 1.4779876188e-05 < opt_tol = 1.0000000000e-02 feas_kkt_err_k = 7.9473675342e-09 < feas_tol = 1.0000000000e-07 comp_kkt_err_k = 0.0000000000e+00 < comp_tol = 1.0000000000e-06 step_err = 1.5510171329e-06 < step_tol = 1.0000000000e-02 Jackpot! Found the solution!!!!!! (k = 7)