93 #include "Epetra_Time.h"
94 #include "Epetra_Map.h"
95 #include "Epetra_FEVector.h"
96 #include "Epetra_SerialComm.h"
99 #include "Teuchos_oblackholestream.hpp"
100 #include "Teuchos_RCP.hpp"
105 #include "Shards_CellTopology.hpp"
108 #include "EpetraExt_MultiVectorOut.h"
111 using namespace Intrepid;
113 int main(
int argc,
char *argv[]) {
117 std::cout <<
"\n>>> ERROR: Invalid number of arguments.\n\n";
118 std::cout <<
"Usage:\n\n";
119 std::cout <<
" ./Intrepid_example_Drivers_Example_10.exe deg NX NY NZ verbose\n\n";
120 std::cout <<
" where \n";
121 std::cout <<
" int deg - polynomial degree to be used (assumed >= 1) \n";
122 std::cout <<
" int NX - num intervals in x direction (assumed box domain, 0,1) \n";
123 std::cout <<
" int NY - num intervals in y direction (assumed box domain, 0,1) \n";
124 std::cout <<
" int NZ - num intervals in y direction (assumed box domain, 0,1) \n";
125 std::cout <<
" verbose (optional) - any character, indicates verbose output \n\n";
131 int iprint = argc - 1;
132 Teuchos::RCP<std::ostream> outStream;
133 Teuchos::oblackholestream bhs;
135 outStream = Teuchos::rcp(&std::cout,
false);
137 outStream = Teuchos::rcp(&bhs,
false);
140 Teuchos::oblackholestream oldFormatState;
141 oldFormatState.copyfmt(std::cout);
144 <<
"===============================================================================\n" \
146 <<
"| Example: Build Stiffness Matrix for |\n" \
147 <<
"| Poisson Equation on Hexahedral Mesh |\n" \
149 <<
"| Questions? Contact Pavel Bochev (pbboche@sandia.gov), |\n" \
150 <<
"| Denis Ridzal (dridzal@sandia.gov), |\n" \
151 <<
"| Kara Peterson (kjpeter@sandia.gov). |\n" \
153 <<
"| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n" \
154 <<
"| Trilinos website: http://trilinos.sandia.gov |\n" \
156 <<
"===============================================================================\n";
161 int deg = atoi(argv[1]);
162 int NX = atoi(argv[2]);
163 int NY = atoi(argv[3]);
164 int NZ = atoi(argv[4]);
170 typedef shards::CellTopology CellTopology;
171 CellTopology hex_8(shards::getCellTopologyData<shards::Hexahedron<8> >() );
174 int numNodesPerElem = hex_8.getNodeCount();
175 int spaceDim = hex_8.getDimension();
179 *outStream <<
"Generating mesh ... \n\n";
181 *outStream <<
" NX" <<
" NY" <<
" NZ\n";
182 *outStream << std::setw(5) << NX <<
183 std::setw(5) << NY << std::setw(5) << NZ <<
"\n\n";
186 int numElems = NX*NY*NZ;
187 int numNodes = (NX+1)*(NY+1)*(NZ+1);
188 *outStream <<
" Number of Elements: " << numElems <<
" \n";
189 *outStream <<
" Number of Nodes: " << numNodes <<
" \n\n";
192 double leftX = 0.0, rightX = 1.0;
193 double leftY = 0.0, rightY = 1.0;
194 double leftZ = 0.0, rightZ = 1.0;
197 double hx = (rightX-leftX)/((
double)NX);
198 double hy = (rightY-leftY)/((
double)NY);
199 double hz = (rightZ-leftZ)/((
double)NZ);
205 for (
int k=0; k<NZ+1; k++)
207 for (
int j=0; j<NY+1; j++)
209 for (
int i=0; i<NX+1; i++)
211 nodeCoord(inode,0) = leftX + (double)i*hx;
212 nodeCoord(inode,1) = leftY + (double)j*hy;
213 nodeCoord(inode,2) = leftZ + (double)k*hz;
214 if (k==0 || k==NZ || j==0 || i==0 || j==NY || i==NX)
216 nodeOnBoundary(inode)=1;
220 nodeOnBoundary(inode)=0;
229 ofstream fcoordout(
"coords.dat");
230 for (
int i=0; i<numNodes; i++) {
231 fcoordout << nodeCoord(i,0) <<
" ";
232 fcoordout << nodeCoord(i,1) <<
" ";
233 fcoordout << nodeCoord(i,2) <<
"\n";
243 for (
int k=0; k<NZ; k++)
245 for (
int j=0; j<NY; j++)
247 for (
int i=0; i<NX; i++)
249 elemToNode(ielem,0) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
250 elemToNode(ielem,1) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
251 elemToNode(ielem,2) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
252 elemToNode(ielem,3) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
253 elemToNode(ielem,4) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
254 elemToNode(ielem,5) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
255 elemToNode(ielem,6) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
256 elemToNode(ielem,7) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
263 ofstream fe2nout(
"elem2node.dat");
264 for (
int k=0;k<NZ;k++)
266 for (
int j=0; j<NY; j++)
268 for (
int i=0; i<NX; i++)
270 ielem = i + j * NX + k * NY * NY;
271 for (
int m=0; m<numNodesPerElem; m++)
273 fe2nout << elemToNode(ielem,m) <<
" ";
283 *outStream <<
"Getting cubature ... \n\n";
287 int cubDegree = 2*deg;
288 Teuchos::RCP<Cubature<double> > quadCub = cubFactory.
create(hex_8, cubDegree);
290 int cubDim = quadCub->getDimension();
291 int numCubPoints = quadCub->getNumPoints();
296 quadCub->getCubature(cubPoints, cubWeights);
300 *outStream <<
"Getting basis ... \n\n";
304 int numFieldsG = quadHGradBasis.getCardinality();
309 quadHGradBasis.getValues(quadGVals, cubPoints, OPERATOR_VALUE);
310 quadHGradBasis.getValues(quadGrads, cubPoints, OPERATOR_GRAD);
314 const int numDOF = (NX*deg+1)*(NY*deg+1)*(NZ*deg+1);
316 for (
int k=0;k<NZ;k++)
318 for (
int j=0;j<NY;j++)
320 for (
int i=0;i<NX;i++)
322 const int start = k * ( NY * deg + 1 ) * ( NX * deg + 1 ) + j * ( NX * deg + 1 ) + i * deg;
325 for (
int kloc=0;kloc<=deg;kloc++)
327 for (
int jloc=0;jloc<=deg;jloc++)
329 for (
int iloc=0;iloc<=deg;iloc++)
331 ltgMapping(ielem,local_dof_cur) = start
332 + kloc * ( NX * deg + 1 ) * ( NY * deg + 1 )
333 + jloc * ( NX * deg + 1 )
345 ofstream ltgout(
"ltg.dat");
346 for (
int k=0;k<NZ;k++)
348 for (
int j=0; j<NY; j++)
350 for (
int i=0; i<NX; i++)
352 ielem = i + j * NX + k * NX * NY;
353 for (
int m=0; m<numFieldsG; m++)
355 ltgout << ltgMapping(ielem,m) <<
" ";
365 Epetra_SerialComm Comm;
366 Epetra_Map globalMapG(numDOF, 0, Comm);
367 Epetra_FEVector u(globalMapG); u.Random();
368 Epetra_FEVector Ku(globalMapG);
373 *outStream <<
"Building reference stiffness matrix...\n\n";
389 Epetra_Time localConstructTimer( Comm );
390 refCellNodes(0,0,0) = 0.0; refCellNodes(0,0,1) = 0.0; refCellNodes(0,0,2) = 0.0;
391 refCellNodes(0,1,0) = hx; refCellNodes(0,1,1) = 0.0; refCellNodes(0,1,2) = 0.0;
392 refCellNodes(0,2,0) = hx; refCellNodes(0,2,1) = hy; refCellNodes(0,2,2) = 0.0;
393 refCellNodes(0,3,0) = 0.0; refCellNodes(0,3,1) = hy; refCellNodes(0,3,2) = 0.0;
394 refCellNodes(0,4,0) = 0.0; refCellNodes(0,4,1) = 0.0; refCellNodes(0,4,2) = hz;
395 refCellNodes(0,5,0) = hx; refCellNodes(0,5,1) = 0.0; refCellNodes(0,5,2) = hz;
396 refCellNodes(0,6,0) = hx; refCellNodes(0,6,1) = hy; refCellNodes(0,6,2) = hz;
397 refCellNodes(0,7,0) = 0.0; refCellNodes(0,7,1) = hy; refCellNodes(0,7,2) = hz;
400 CellTools::setJacobian(cellJacobian,cubPoints,refCellNodes,hex_8);
401 CellTools::setJacobianInv(cellJacobInv, cellJacobian );
402 CellTools::setJacobianDet(cellJacobDet, cellJacobian );
405 fst::HGRADtransformGRAD<double>(transformedBasisGradients, cellJacobInv, quadGrads);
408 fst::computeCellMeasure<double>(weightedMeasure, cellJacobDet, cubWeights);
411 fst::multiplyMeasure<double>(weightedTransformedBasisGradients,
412 weightedMeasure, transformedBasisGradients);
415 fst::integrate<double>(localStiffMatrix,
416 transformedBasisGradients, weightedTransformedBasisGradients , COMP_BLAS);
418 const double localConstructTime = localConstructTimer.ElapsedTime();
426 Epetra_Time multTimer(Comm);
427 Teuchos::BLAS<int,double> blas;
431 double *uVals = u[0];
432 double *KuVals = Ku[0];
434 Epetra_Time scatterTimer(Comm);
435 std::cout <<
"Scattering\n";
437 for (
int k=0; k<numElems; k++)
439 for (
int i=0;i<numFieldsG;i++)
441 uScattered(k,i) = uVals[ltgMapping(k,i)];
444 const double scatterTime = scatterTimer.ElapsedTime();
446 Epetra_Time blasTimer(Comm);
447 blas.GEMM(Teuchos::NO_TRANS , Teuchos::NO_TRANS ,
448 numFieldsG , numElems, numFieldsG ,
450 &localStiffMatrix(0,0,0) ,
457 const double blasTime = blasTimer.ElapsedTime();
459 Epetra_Time gatherTimer(Comm);
461 for (
int k=0;k<numElems;k++)
463 for (
int i=0;i<numFieldsG;i++)
465 KuVals[ltgMapping(k,i)] += KuScattered(k,i);
469 const double gatherTime = gatherTimer.ElapsedTime();
472 *outStream <<
"Time to build local matrix (including Jacobian computation): "<< localConstructTime <<
"\n";
473 *outStream <<
"Time to scatter " << scatterTime <<
"\n";
474 *outStream <<
"Time for local application " << blasTime <<
"\n";
475 *outStream <<
"Time to gather " << gatherTime <<
"\n";
476 *outStream <<
"Total matrix-free time " << scatterTime + blasTime + gatherTime <<
"\n";
479 *outStream <<
"End Result: TEST PASSED\n";
482 std::cout.copyfmt(oldFormatState);
Header file for utility class to provide multidimensional containers.
Header file for the Intrepid::HGRAD_HEX_Cn_FEM class.
Header file for the abstract base class Intrepid::DefaultCubatureFactory.
Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell...
A factory class that generates specific instances of cubatures.
Teuchos::RCP< Cubature< Scalar, ArrayPoint, ArrayWeight > > create(const shards::CellTopology &cellTopology, const std::vector< int > °ree)
Factory method.