95 #include "Epetra_Time.h"
96 #include "Epetra_Map.h"
97 #include "Epetra_FEVector.h"
98 #include "Epetra_FECrsMatrix.h"
99 #include "Epetra_SerialComm.h"
102 #include "Teuchos_oblackholestream.hpp"
103 #include "Teuchos_RCP.hpp"
108 #include "Shards_CellTopology.hpp"
111 #include "EpetraExt_MultiVectorOut.h"
114 using namespace Intrepid;
116 int main(
int argc,
char *argv[]) {
120 std::cout <<
"\n>>> ERROR: Invalid number of arguments.\n\n";
121 std::cout <<
"Usage:\n\n";
122 std::cout <<
" ./Intrepid_example_Drivers_Example_10.exe deg NX NY NZ verbose\n\n";
123 std::cout <<
" where \n";
124 std::cout <<
" int deg - polynomial degree to be used (assumed >= 1) \n";
125 std::cout <<
" int NX - num intervals in x direction (assumed box domain, 0,1) \n";
126 std::cout <<
" int NY - num intervals in y direction (assumed box domain, 0,1) \n";
127 std::cout <<
" int NZ - num intervals in y direction (assumed box domain, 0,1) \n";
128 std::cout <<
" verbose (optional) - any character, indicates verbose output \n\n";
134 int iprint = argc - 1;
135 Teuchos::RCP<std::ostream> outStream;
136 Teuchos::oblackholestream bhs;
138 outStream = Teuchos::rcp(&std::cout,
false);
140 outStream = Teuchos::rcp(&bhs,
false);
143 Teuchos::oblackholestream oldFormatState;
144 oldFormatState.copyfmt(std::cout);
147 <<
"===============================================================================\n" \
149 <<
"| Example: Build Stiffness Matrix for |\n" \
150 <<
"| Poisson Equation on Hexahedral Mesh |\n" \
152 <<
"| Questions? Contact Pavel Bochev (pbboche@sandia.gov), |\n" \
153 <<
"| Denis Ridzal (dridzal@sandia.gov), |\n" \
154 <<
"| Kara Peterson (kjpeter@sandia.gov). |\n" \
156 <<
"| Intrepid's website: http://trilinos.sandia.gov/packages/intrepid |\n" \
157 <<
"| Trilinos website: http://trilinos.sandia.gov |\n" \
159 <<
"===============================================================================\n";
164 int deg = atoi(argv[1]);
165 int NX = atoi(argv[2]);
166 int NY = atoi(argv[3]);
167 int NZ = atoi(argv[4]);
173 typedef shards::CellTopology CellTopology;
174 CellTopology hex_8(shards::getCellTopologyData<shards::Hexahedron<8> >() );
177 int numNodesPerElem = hex_8.getNodeCount();
178 int spaceDim = hex_8.getDimension();
182 *outStream <<
"Generating mesh ... \n\n";
184 *outStream <<
" NX" <<
" NY" <<
" NZ\n";
185 *outStream << std::setw(5) << NX <<
186 std::setw(5) << NY << std::setw(5) << NZ <<
"\n\n";
189 int numElems = NX*NY*NZ;
190 int numNodes = (NX+1)*(NY+1)*(NZ+1);
191 *outStream <<
" Number of Elements: " << numElems <<
" \n";
192 *outStream <<
" Number of Nodes: " << numNodes <<
" \n\n";
195 double leftX = 0.0, rightX = 1.0;
196 double leftY = 0.0, rightY = 1.0;
197 double leftZ = 0.0, rightZ = 1.0;
200 double hx = (rightX-leftX)/((
double)NX);
201 double hy = (rightY-leftY)/((
double)NY);
202 double hz = (rightZ-leftZ)/((
double)NZ);
208 for (
int k=0; k<NZ+1; k++)
210 for (
int j=0; j<NY+1; j++)
212 for (
int i=0; i<NX+1; i++)
214 nodeCoord(inode,0) = leftX + (double)i*hx;
215 nodeCoord(inode,1) = leftY + (double)j*hy;
216 nodeCoord(inode,2) = leftZ + (double)k*hz;
217 if (k==0 || k==NZ || j==0 || i==0 || j==NY || i==NX)
219 nodeOnBoundary(inode)=1;
223 nodeOnBoundary(inode)=0;
232 ofstream fcoordout(
"coords.dat");
233 for (
int i=0; i<numNodes; i++) {
234 fcoordout << nodeCoord(i,0) <<
" ";
235 fcoordout << nodeCoord(i,1) <<
" ";
236 fcoordout << nodeCoord(i,2) <<
"\n";
246 for (
int k=0; k<NZ; k++)
248 for (
int j=0; j<NY; j++)
250 for (
int i=0; i<NX; i++)
252 elemToNode(ielem,0) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
253 elemToNode(ielem,1) = k * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
254 elemToNode(ielem,2) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
255 elemToNode(ielem,3) = k * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
256 elemToNode(ielem,4) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i;
257 elemToNode(ielem,5) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + j * ( NX + 1 ) + i + 1;
258 elemToNode(ielem,6) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i + 1;
259 elemToNode(ielem,7) = ( k + 1 ) * ( NX + 1 ) * ( NY + 1 ) + ( j + 1 ) * ( NX + 1 ) + i;
266 ofstream fe2nout(
"elem2node.dat");
267 for (
int k=0;k<NZ;k++)
269 for (
int j=0; j<NY; j++)
271 for (
int i=0; i<NX; i++)
273 ielem = i + j * NX + k * NY * NY;
274 for (
int m=0; m<numNodesPerElem; m++)
276 fe2nout << elemToNode(ielem,m) <<
" ";
286 *outStream <<
"Getting cubature ... \n\n";
290 int cubDegree = 2*deg;
291 Teuchos::RCP<Cubature<double> > quadCub = cubFactory.
create(hex_8, cubDegree);
293 int cubDim = quadCub->getDimension();
294 int numCubPoints = quadCub->getNumPoints();
299 quadCub->getCubature(cubPoints, cubWeights);
304 *outStream <<
"Getting basis ... \n\n";
308 int numFieldsG = quadHGradBasis.getCardinality();
313 quadHGradBasis.getValues(quadGVals, cubPoints, OPERATOR_VALUE);
314 quadHGradBasis.getValues(quadGrads, cubPoints, OPERATOR_GRAD);
318 const int numDOF = (NX*deg+1)*(NY*deg+1)*(NZ*deg+1);
320 for (
int k=0;k<NZ;k++)
322 for (
int j=0;j<NY;j++)
324 for (
int i=0;i<NX;i++)
326 const int start = k * ( NY * deg + 1 ) * ( NX * deg + 1 ) + j * ( NX * deg + 1 ) + i * deg;
329 for (
int kloc=0;kloc<=deg;kloc++)
331 for (
int jloc=0;jloc<=deg;jloc++)
333 for (
int iloc=0;iloc<=deg;iloc++)
335 ltgMapping(ielem,local_dof_cur) = start
336 + kloc * ( NX * deg + 1 ) * ( NY * deg + 1 )
337 + jloc * ( NX * deg + 1 )
350 ofstream ltgout(
"ltg.dat");
351 for (
int k=0;k<NZ;k++)
353 for (
int j=0; j<NY; j++)
355 for (
int i=0; i<NX; i++)
357 ielem = i + j * NX + k * NX * NY;
358 for (
int m=0; m<numFieldsG; m++)
360 ltgout << ltgMapping(ielem,m) <<
" ";
370 Epetra_SerialComm Comm;
371 Epetra_Map globalMapG(numDOF, 0, Comm);
372 Epetra_FEVector u(globalMapG); u.Random();
373 Epetra_FEVector Ku(globalMapG);
376 Epetra_Time instantiateTimer(Comm);
377 Epetra_FECrsMatrix StiffMatrix(Copy,globalMapG,8*numFieldsG);
378 const double instantiateTime = instantiateTimer.ElapsedTime();
382 *outStream <<
"Building local stiffness matrices...\n\n";
385 int numCells = numElems;
403 for (
int i=0;i<numElems;i++)
405 for (
int j=0;j<numNodesPerElem;j++)
407 const int nodeCur = elemToNode(i,j);
408 for (
int k=0;k<spaceDim;k++)
410 cellVertices(i,j,k) = nodeCoord(nodeCur,k);
415 Epetra_Time localConstructTimer( Comm );
418 CellTools::setJacobian(cellJacobian,cubPoints,cellVertices,hex_8);
419 CellTools::setJacobianInv(cellJacobInv, cellJacobian );
420 CellTools::setJacobianDet(cellJacobDet, cellJacobian );
423 fst::HGRADtransformGRAD<double>(transformedBasisGradients, cellJacobInv, quadGrads);
426 fst::computeCellMeasure<double>(weightedMeasure, cellJacobDet, cubWeights);
429 fst::multiplyMeasure<double>(weightedTransformedBasisGradients,
430 weightedMeasure, transformedBasisGradients);
433 fst::integrate<double>(localStiffMatrices,
434 transformedBasisGradients, weightedTransformedBasisGradients , COMP_BLAS);
436 const double localConstructTime = localConstructTimer.ElapsedTime();
439 Epetra_Time insertionTimer(Comm);
442 for (
int k=0; k<numElems; k++)
445 StiffMatrix.InsertGlobalValues(numFieldsG,<gMapping(k,0),numFieldsG,<gMapping(k,0),&localStiffMatrices(k,0,0));
448 StiffMatrix.GlobalAssemble(); StiffMatrix.FillComplete();
449 const double insertionTime = insertionTimer.ElapsedTime( );
451 *outStream <<
"Time to instantiate global stiffness matrix: " << instantiateTime <<
"\n";
452 *outStream <<
"Time to build local matrices (including Jacobian computation): "<< localConstructTime <<
"\n";
453 *outStream <<
"Time to assemble global matrix from local matrices: " << insertionTime <<
"\n";
454 *outStream <<
"Total construction time: " << instantiateTime + localConstructTime + insertionTime <<
"\n";
456 Epetra_Time applyTimer(Comm);
457 StiffMatrix.Apply(u,Ku);
458 const double multTime = applyTimer.ElapsedTime();
459 *outStream <<
"Time to multiply onto a vector: " << multTime <<
"\n";
461 *outStream <<
"End Result: TEST PASSED\n";
464 std::cout.copyfmt(oldFormatState);
Header file for utility class to provide multidimensional containers.
Header file for the Intrepid::HGRAD_HEX_Cn_FEM class.
Header file for the abstract base class Intrepid::DefaultCubatureFactory.
Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell...
A factory class that generates specific instances of cubatures.
Teuchos::RCP< Cubature< Scalar, ArrayPoint, ArrayWeight > > create(const shards::CellTopology &cellTopology, const std::vector< int > °ree)
Factory method.