GlobiPack Package Browser (Single Doxygen Collection)  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
meritFuncsHelpers.hpp
Go to the documentation of this file.
1 /*
2 // @HEADER
3 // ***********************************************************************
4 //
5 // GlobiPack: Collection of Scalar 1D globalizaton utilities
6 // Copyright (2009) Sandia Corporation
7 //
8 // Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
9 // license for use of this work by or on behalf of the U.S. Government.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
39 //
40 // ***********************************************************************
41 // @HEADER
42 */
43 
44 
45 #include "GlobiPack_TestLagrPolyMeritFunc1D.hpp"
46 #include "Teuchos_Tuple.hpp"
47 
48 
49 namespace {
50 
51 
55 using Teuchos::RCP;
56 using Teuchos::Array;
57 using Teuchos::tuple;
58 
59 
60 template<class Scalar>
61 inline Scalar sqr(const Scalar &x) { return x*x; }
62 
63 
64 template<class Scalar>
65 inline Scalar cube(const Scalar &x) { return x*x*x; }
66 
67 
68 //
69 // Set up a quadratic merit function with minimizer at alpha=2.0, phi=3.0.
70 //
71 
72 template<class Scalar>
73 const RCP<TestLagrPolyMeritFunc1D<Scalar> > quadPhi()
74 {
76  typedef typename ST::magnitudeType ScalarMag;
77  Array<Scalar> alphaPoints = tuple<Scalar>(0.0, 2.0, 4.0);
78  Array<ScalarMag> phiPoints = tuple<ScalarMag>(6.0, 3.0, 6.0);
79  return testLagrPolyMeritFunc1D<Scalar>(alphaPoints, phiPoints);
80 }
81 
82 
83 //
84 // Set up a cubic merit function with minimizer at alpha=2.0, phi=3.0;
85 //
86 // The function being represented approximated is:
87 //
88 // phi(alpha) = (alpha - 2.0)^2 + 1e-3 * (alpha - 2.0)^3 + 3.0
89 //
90 // This function has the first and second derivatives derivatives:
91 //
92 // Dphi(alpha) = 2.0 * (alpha - 2.0) + 3e-3 * (alpha - 2.0)^2
93 //
94 // D2phi(alpha) = 2.0 + 6e-3 * (alpha - 2.0)
95 //
96 // At alpha=2.0, the function has Dphi=0.0 and D2phi = 2.0 and therefore, this
97 // is a local minimum.
98 //
99 
100 
101 const double cubicMut = 1e-3;
102 
103 
104 template<class Scalar>
105 inline Scalar cubicPhiVal(const Scalar &alpha)
106 { return sqr(alpha - 2.0) + cubicMut * cube(alpha - 2.0) + 3.0; }
107 
108 
109 template<class Scalar>
110 const RCP<TestLagrPolyMeritFunc1D<Scalar> > cubicPhi()
111 {
113  typedef typename ST::magnitudeType ScalarMag;
114  Array<Scalar> alphaPoints =
115  tuple<Scalar>(0.0, 1.0, 3.0, 4.0);
116  Array<ScalarMag> phiPoints =
117  tuple<ScalarMag>(
118  cubicPhiVal(alphaPoints[0]),
119  cubicPhiVal(alphaPoints[1]),
120  cubicPhiVal(alphaPoints[2]),
121  cubicPhiVal(alphaPoints[3])
122  );
123  return testLagrPolyMeritFunc1D<Scalar>(alphaPoints, phiPoints);
124 }
125 
126 
127 } // namespace
const RCP< TestLagrPolyMeritFunc1D< Scalar > > testLagrPolyMeritFunc1D(const ArrayView< const Scalar > &alpha, const ArrayView< const Scalar > &phi)
Represents the evaluation point of the merit function phi(alpha) and/or is derivative Dphi(alpha)...
Lagrange Polynomial Merit Function used in testing.