Compadre  1.5.5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
GMLS_Vector.cpp
Go to the documentation of this file.
1 #include <iostream>
2 #include <string>
3 #include <vector>
4 #include <map>
5 #include <stdlib.h>
6 #include <cstdio>
7 #include <random>
8 
9 #include <Compadre_Config.h>
10 #include <Compadre_GMLS.hpp>
11 #include <Compadre_Evaluator.hpp>
13 
14 #include "GMLS_Tutorial.hpp"
15 #include "CommandLineProcessor.hpp"
16 
17 #ifdef COMPADRE_USE_MPI
18 #include <mpi.h>
19 #endif
20 
21 #include <Kokkos_Timer.hpp>
22 #include <Kokkos_Core.hpp>
23 
24 using namespace Compadre;
25 
26 //! [Parse Command Line Arguments]
27 
28 // called from command line
29 int main (int argc, char* args[]) {
30 
31 // initializes MPI (if available) with command line arguments given
32 #ifdef COMPADRE_USE_MPI
33 MPI_Init(&argc, &args);
34 #endif
35 
36 // initializes Kokkos with command line arguments given
37 Kokkos::initialize(argc, args);
38 
39 // becomes false if the computed solution not within the failure_threshold of the actual solution
40 bool all_passed = true;
41 
42 // code block to reduce scope for all Kokkos View allocations
43 // otherwise, Views may be deallocating when we call Kokkos::finalize() later
44 {
45 
46  CommandLineProcessor clp(argc, args);
47  auto order = clp.order;
48  auto dimension = clp.dimension;
49  auto number_target_coords = clp.number_target_coords;
50  auto constraint_name = clp.constraint_name;
51  auto solver_name = clp.solver_name;
52  auto problem_name = clp.problem_name;
53 
54  // the functions we will be seeking to reconstruct are in the span of the basis
55  // of the reconstruction space we choose for GMLS, so the error should be very small
56  const double failure_tolerance = 1e-9;
57 
58  // minimum neighbors for unisolvency is the same as the size of the polynomial basis
59  const int min_neighbors = Compadre::GMLS::getNP(order, dimension);
60 
61  //! [Parse Command Line Arguments]
62  Kokkos::Timer timer;
63  Kokkos::Profiling::pushRegion("Setup Point Data");
64  //! [Setting Up The Point Cloud]
65 
66  // approximate spacing of source sites
67  double h_spacing = 0.05;
68  int n_neg1_to_1 = 2*(1/h_spacing) + 1; // always odd
69 
70  // number of source coordinate sites that will fill a box of [-1,1]x[-1,1]x[-1,1] with a spacing approximately h
71  const int number_source_coords = std::pow(n_neg1_to_1, dimension);
72 
73  // Coordinates for source and target sites are allocated through memory managed views just
74  // to allocate space for the data and from which to provide a pointer to raw data on the device.
75  // An unmanaged view is then created and pointed at this raw pointer in order to test the GMLS class
76  // setSourceSites and setTargetSites interface.
77 
78  // coordinates of source sites
79  // data allocated on device memory space
80  Kokkos::View<double**, Kokkos::DefaultExecutionSpace> source_coords_data("source coordinates",
81  number_source_coords, 3);
82  // later accessed through unmanaged memory view
83  scratch_matrix_left_type source_coords_device(source_coords_data.data(),
84  number_source_coords, 3);
85  scratch_matrix_left_type::HostMirror source_coords = Kokkos::create_mirror_view(source_coords_device);
86 
87  // coordinates of target sites
88  // data allocated on device memory space
89  Kokkos::View<double**, Kokkos::DefaultExecutionSpace> target_coords_data("target coordinates",
90  number_target_coords, 3);
91  // later accessed through unmanaged memory view
92  scratch_matrix_right_type target_coords_device (target_coords_data.data(), number_target_coords, 3);
93  scratch_matrix_right_type::HostMirror target_coords = Kokkos::create_mirror_view(target_coords_device);
94 
95 
96  // fill source coordinates with a uniform grid
97  int source_index = 0;
98  double this_coord[3] = {0,0,0};
99  for (int i=-n_neg1_to_1/2; i<n_neg1_to_1/2+1; ++i) {
100  this_coord[0] = i*h_spacing;
101  for (int j=-n_neg1_to_1/2; j<n_neg1_to_1/2+1; ++j) {
102  this_coord[1] = j*h_spacing;
103  for (int k=-n_neg1_to_1/2; k<n_neg1_to_1/2+1; ++k) {
104  this_coord[2] = k*h_spacing;
105  if (dimension==3) {
106  source_coords(source_index,0) = this_coord[0];
107  source_coords(source_index,1) = this_coord[1];
108  source_coords(source_index,2) = this_coord[2];
109  source_index++;
110  }
111  }
112  if (dimension==2) {
113  source_coords(source_index,0) = this_coord[0];
114  source_coords(source_index,1) = this_coord[1];
115  source_coords(source_index,2) = 0;
116  source_index++;
117  }
118  }
119  if (dimension==1) {
120  source_coords(source_index,0) = this_coord[0];
121  source_coords(source_index,1) = 0;
122  source_coords(source_index,2) = 0;
123  source_index++;
124  }
125  }
126 
127  // fill target coords somewhere inside of [-0.5,0.5]x[-0.5,0.5]x[-0.5,0.5]
128  for(int i=0; i<number_target_coords; i++){
129 
130  // first, we get a uniformly random distributed direction
131  double rand_dir[3] = {0,0,0};
132 
133  for (int j=0; j<dimension; ++j) {
134  // rand_dir[j] is in [-0.5, 0.5]
135  rand_dir[j] = ((double)rand() / (double) RAND_MAX) - 0.5;
136  }
137 
138  // then we get a uniformly random radius
139  for (int j=0; j<dimension; ++j) {
140  target_coords(i,j) = rand_dir[j];
141  }
142 
143  }
144 
145 
146  //! [Setting Up The Point Cloud]
147 
148  Kokkos::Profiling::popRegion();
149  Kokkos::Profiling::pushRegion("Creating Data");
150 
151  //! [Creating The Data]
152 
153 
154  // source coordinates need copied to device before using to construct sampling data
155  Kokkos::deep_copy(source_coords_device, source_coords);
156 
157  // target coordinates copied next, because it is a convenient time to send them to device
158  Kokkos::deep_copy(target_coords_device, target_coords);
159 
160  // need Kokkos View storing true solution
161  Kokkos::View<double*, Kokkos::DefaultExecutionSpace> sampling_data_device("samples of true solution",
162  source_coords_device.extent(0));
163 
164  Kokkos::View<double**, Kokkos::DefaultExecutionSpace> gradient_sampling_data_device("samples of true gradient",
165  source_coords_device.extent(0), dimension);
166 
167  Kokkos::View<double**, Kokkos::DefaultExecutionSpace> divergence_sampling_data_device
168  ("samples of true solution for divergence test", source_coords_device.extent(0), dimension);
169 
170  Kokkos::parallel_for("Sampling Manufactured Solutions", Kokkos::RangePolicy<Kokkos::DefaultExecutionSpace>
171  (0,source_coords.extent(0)), KOKKOS_LAMBDA(const int i) {
172 
173  // coordinates of source site i
174  double xval = source_coords_device(i,0);
175  double yval = (dimension>1) ? source_coords_device(i,1) : 0;
176  double zval = (dimension>2) ? source_coords_device(i,2) : 0;
177 
178  // data for targets with scalar input
179  sampling_data_device(i) = trueSolution(xval, yval, zval, order, dimension);
180 
181  // data for targets with vector input (divergence)
182  double true_grad[3] = {0,0,0};
183  trueGradient(true_grad, xval, yval,zval, order, dimension);
184 
185  for (int j=0; j<dimension; ++j) {
186  gradient_sampling_data_device(i,j) = true_grad[j];
187 
188  // data for target with vector input (curl)
189  divergence_sampling_data_device(i,j) = divergenceTestSamples(xval, yval, zval, j, dimension);
190  }
191 
192  });
193 
194 
195  //! [Creating The Data]
196 
197  Kokkos::Profiling::popRegion();
198  Kokkos::Profiling::pushRegion("Neighbor Search");
199 
200  //! [Performing Neighbor Search]
201 
202 
203  // Point cloud construction for neighbor search
204  // CreatePointCloudSearch constructs an object of type PointCloudSearch, but deduces the templates for you
205  auto point_cloud_search(CreatePointCloudSearch(source_coords, dimension));
206 
207  // each row is a neighbor list for a target site, with the first column of each row containing
208  // the number of neighbors for that rows corresponding target site
209  double epsilon_multiplier = 1.5;
210  int estimated_upper_bound_number_neighbors =
211  point_cloud_search.getEstimatedNumberNeighborsUpperBound(min_neighbors, dimension, epsilon_multiplier);
212 
213  Kokkos::View<int**, Kokkos::DefaultExecutionSpace> neighbor_lists_device("neighbor lists",
214  number_target_coords, estimated_upper_bound_number_neighbors); // first column is # of neighbors
215  Kokkos::View<int**>::HostMirror neighbor_lists = Kokkos::create_mirror_view(neighbor_lists_device);
216 
217  // each target site has a window size
218  Kokkos::View<double*, Kokkos::DefaultExecutionSpace> epsilon_device("h supports", number_target_coords);
219  Kokkos::View<double*>::HostMirror epsilon = Kokkos::create_mirror_view(epsilon_device);
220 
221  // query the point cloud to generate the neighbor lists using a kdtree to produce the n nearest neighbor
222  // to each target site, adding (epsilon_multiplier-1)*100% to whatever the distance away the further neighbor used is from
223  // each target to the view for epsilon
224  point_cloud_search.generate2DNeighborListsFromKNNSearch(false /*not dry run*/, target_coords, neighbor_lists,
225  epsilon, min_neighbors, epsilon_multiplier);
226 
227 
228  //! [Performing Neighbor Search]
229 
230  Kokkos::Profiling::popRegion();
231  Kokkos::fence(); // let call to build neighbor lists complete before copying back to device
232  timer.reset();
233 
234  //! [Setting Up The GMLS Object]
235 
236 
237  // Copy data back to device (they were filled on the host)
238  // We could have filled Kokkos Views with memory space on the host
239  // and used these instead, and then the copying of data to the device
240  // would be performed in the GMLS class
241  Kokkos::deep_copy(neighbor_lists_device, neighbor_lists);
242  Kokkos::deep_copy(epsilon_device, epsilon);
243 
244  // initialize an instance of the GMLS class
246  order, dimension,
247  solver_name.c_str(), problem_name.c_str(), constraint_name.c_str(),
248  2 /*manifold order*/);
249 
250  // pass in neighbor lists, source coordinates, target coordinates, and window sizes
251  //
252  // neighbor lists have the format:
253  // dimensions: (# number of target sites) X (# maximum number of neighbors for any given target + 1)
254  // the first column contains the number of neighbors for that rows corresponding target index
255  //
256  // source coordinates have the format:
257  // dimensions: (# number of source sites) X (dimension)
258  // entries in the neighbor lists (integers) correspond to rows of this 2D array
259  //
260  // target coordinates have the format:
261  // dimensions: (# number of target sites) X (dimension)
262  // # of target sites is same as # of rows of neighbor lists
263  //
264  my_GMLS.setProblemData(neighbor_lists_device, source_coords_device, target_coords_device, epsilon_device);
265 
266  // create a vector of target operations
267  std::vector<TargetOperation> lro(5);
268  lro[0] = ScalarPointEvaluation;
271  lro[3] = VectorPointEvaluation;
273 
274  // and then pass them to the GMLS class
275  my_GMLS.addTargets(lro);
276 
277  // sets the weighting kernel function from WeightingFunctionType
278  my_GMLS.setWeightingType(WeightingFunctionType::Power);
279 
280  // power to use in that weighting kernel function
281  my_GMLS.setWeightingParameter(2);
282 
283  // generate the alphas that to be combined with data for each target operation requested in lro
284  my_GMLS.generateAlphas(1, true /* keep polynomial coefficients, only needed for a test later in this program */);
285 
286 
287  //! [Setting Up The GMLS Object]
288 
289  double instantiation_time = timer.seconds();
290  std::cout << "Took " << instantiation_time << "s to complete alphas generation." << std::endl;
291  Kokkos::fence(); // let generateAlphas finish up before using alphas
292  Kokkos::Profiling::pushRegion("Apply Alphas to Data");
293 
294  //! [Apply GMLS Alphas To Data]
295 
296  // it is important to note that if you expect to use the data as a 1D view, then you should use double*
297  // however, if you know that the target operation will result in a 2D view (vector or matrix output),
298  // then you should template with double** as this is something that can not be infered from the input data
299  // or the target operator at compile time. Additionally, a template argument is required indicating either
300  // Kokkos::HostSpace or Kokkos::DefaultExecutionSpace::memory_space()
301 
302  // The Evaluator class takes care of handling input data views as well as the output data views.
303  // It uses information from the GMLS class to determine how many components are in the input
304  // as well as output for any choice of target functionals and then performs the contactions
305  // on the data using the alpha coefficients generated by the GMLS class, all on the device.
306  Evaluator gmls_evaluator(&my_GMLS);
307 
308  auto output_value = gmls_evaluator.applyAlphasToDataAllComponentsAllTargetSites<double*, Kokkos::HostSpace>
309  (sampling_data_device, ScalarPointEvaluation);
310 
311  auto output_divergence = gmls_evaluator.applyAlphasToDataAllComponentsAllTargetSites<double*, Kokkos::HostSpace>
312  (gradient_sampling_data_device, DivergenceOfVectorPointEvaluation, VectorPointSample);
313 
314  auto output_curl = gmls_evaluator.applyAlphasToDataAllComponentsAllTargetSites<double**, Kokkos::HostSpace>
315  (divergence_sampling_data_device, CurlOfVectorPointEvaluation);
316 
317  auto output_gradient = gmls_evaluator.applyAlphasToDataAllComponentsAllTargetSites<double**, Kokkos::HostSpace>
318  (gradient_sampling_data_device, VectorPointEvaluation);
319 
320  auto output_hessian = gmls_evaluator.applyAlphasToDataAllComponentsAllTargetSites<double**, Kokkos::HostSpace>
321  (gradient_sampling_data_device, GradientOfVectorPointEvaluation);
322 
323  // retrieves polynomial coefficients instead of remapped field
324  auto scalar_coefficients = gmls_evaluator.applyFullPolynomialCoefficientsBasisToDataAllComponents<double**, Kokkos::HostSpace>
325  (sampling_data_device);
326 
327  auto vector_coefficients = gmls_evaluator.applyFullPolynomialCoefficientsBasisToDataAllComponents<double**, Kokkos::HostSpace>
328  (gradient_sampling_data_device);
329 
330  //! [Apply GMLS Alphas To Data]
331 
332  Kokkos::fence(); // let application of alphas to data finish before using results
333  Kokkos::Profiling::popRegion();
334  // times the Comparison in Kokkos
335  Kokkos::Profiling::pushRegion("Comparison");
336 
337  //! [Check That Solutions Are Correct]
338 
339 
340  // loop through the target sites
341  for (int i=0; i<number_target_coords; i++) {
342 
343  // load value from output
344  double GMLS_value = output_value(i);
345 
346  // load partial x from gradient
347  // this is a test that the scalar_coefficients 2d array returned hold valid entries
348  // scalar_coefficients(i,1)*1./epsilon(i) is equivalent to the target operation acting
349  // on the polynomials applied to the polynomial coefficients
350  double GMLS_GradX = scalar_coefficients(i,1)*1./epsilon(i);
351 
352  // load partial y from gradient
353  double GMLS_GradY = (dimension>1) ? output_gradient(i,1) : 0;
354 
355  // load partial z from gradient
356  double GMLS_GradZ = (dimension>2) ? output_gradient(i,2) : 0;
357 
358  // load divergence from output
359  double GMLS_Divergence = output_divergence(i);
360 
361  // load curl from output
362  double GMLS_CurlX = (dimension>1) ? output_curl(i,0) : 0;
363  double GMLS_CurlY = (dimension>1) ? output_curl(i,1) : 0;
364  double GMLS_CurlZ = (dimension>2) ? output_curl(i,2) : 0;
365 
366  auto NP = min_neighbors; // size of basis is same as # needed for unisolvency
367  // load hessian
368  double GMLS_GradXX = output_hessian(i,0*dimension+0);
369  double GMLS_GradXY = (dimension>1) ? output_hessian(i,0*dimension+1) : 0;
370  double GMLS_GradXZ = (dimension>2) ? output_hessian(i,0*dimension+2) : 0;
371  double GMLS_GradYX = (dimension>1) ? output_hessian(i,1*dimension+0) : 0;
372  // replace YY with with vector_coefficients as test that vector_coefficients hold valid entries
373  double GMLS_GradYY = (dimension>1) ? vector_coefficients(i,1*NP+2)*1./epsilon(i) : 0;
374  double GMLS_GradYZ = (dimension>2) ? output_hessian(i,1*dimension+2) : 0;
375  double GMLS_GradZX = (dimension>2) ? output_hessian(i,2*dimension+0) : 0;
376  // replace ZY with with vector_coefficients as test that vector_coefficients hold valid entries
377  double GMLS_GradZY = (dimension>2) ? vector_coefficients(i,2*NP+2)*1./epsilon(i) : 0;
378  double GMLS_GradZZ = (dimension>2) ? output_hessian(i,2*dimension+2) : 0;
379 
380  // target site i's coordinate
381  double xval = target_coords(i,0);
382  double yval = (dimension>1) ? target_coords(i,1) : 0;
383  double zval = (dimension>2) ? target_coords(i,2) : 0;
384 
385  // evaluation of various exact solutions
386  double actual_value = trueSolution(xval, yval, zval, order, dimension);
387 
388  double actual_Gradient[3] = {0,0,0}; // initialized for 3, but only filled up to dimension
389  trueGradient(actual_Gradient, xval, yval, zval, order, dimension);
390 
391  double actual_Divergence;
392  actual_Divergence = trueLaplacian(xval, yval, zval, order, dimension);
393 
394  double actual_Hessian[9] = {0,0,0,0,0,0,0,0,0}; // initialized for 3, but only filled up to dimension
395  trueHessian(actual_Hessian, xval, yval, zval, order, dimension);
396 
397  double actual_Curl[3] = {0,0,0}; // initialized for 3, but only filled up to dimension
398  // (and not at all for dimimension = 1)
399  if (dimension>1) {
400  actual_Curl[0] = curlTestSolution(xval, yval, zval, 0, dimension);
401  actual_Curl[1] = curlTestSolution(xval, yval, zval, 1, dimension);
402  if (dimension>2) {
403  actual_Curl[2] = curlTestSolution(xval, yval, zval, 2, dimension);
404  }
405  }
406 
407  // check actual function value
408  if(GMLS_value!=GMLS_value || std::abs(actual_value - GMLS_value) > failure_tolerance) {
409  all_passed = false;
410  std::cout << i << " Failed Actual by: " << std::abs(actual_value - GMLS_value) << std::endl;
411  }
412 
413  // check vector (which is the gradient)
414  if(std::abs(actual_Gradient[0] - GMLS_GradX) > failure_tolerance) {
415  all_passed = false;
416  std::cout << i << " Failed GradX by: " << std::abs(actual_Gradient[0] - GMLS_GradX) << std::endl;
417  }
418  if (dimension>1) {
419  if(std::abs(actual_Gradient[1] - GMLS_GradY) > failure_tolerance) {
420  all_passed = false;
421  std::cout << i << " Failed GradY by: " << std::abs(actual_Gradient[1] - GMLS_GradY) << std::endl;
422  }
423  }
424  if (dimension>2) {
425  if(std::abs(actual_Gradient[2] - GMLS_GradZ) > failure_tolerance) {
426  all_passed = false;
427  std::cout << i << " Failed GradZ by: " << std::abs(actual_Gradient[2] - GMLS_GradZ) << std::endl;
428  }
429  }
430 
431  // check divergence
432  if(std::abs(actual_Divergence - GMLS_Divergence) > failure_tolerance) {
433  all_passed = false;
434  std::cout << i << " Failed Divergence by: " << std::abs(actual_Divergence - GMLS_Divergence) << std::endl;
435  }
436 
437  // check matrix (which is the hessian)
438  if(std::abs(actual_Hessian[0] - GMLS_GradXX) > failure_tolerance) {
439  all_passed = false;
440  std::cout << i << " Failed GradXX by: " << std::abs(actual_Hessian[0] - GMLS_GradXX) << std::endl;
441  }
442  if (dimension>1) {
443  if(std::abs(actual_Hessian[1] - GMLS_GradXY) > failure_tolerance) {
444  all_passed = false;
445  std::cout << i << " Failed GradXY by: " << std::abs(actual_Hessian[1] - GMLS_GradXY) << std::endl;
446  }
447  if(std::abs(actual_Hessian[1*dimension+1] - GMLS_GradYY) > failure_tolerance) {
448  all_passed = false;
449  std::cout << i << " Failed GradYY by: " << std::abs(actual_Hessian[1*dimension+1] - GMLS_GradYY) << std::endl;
450  }
451  if(std::abs(actual_Hessian[1*dimension+0] - GMLS_GradYX) > failure_tolerance) {
452  all_passed = false;
453  std::cout << i << " Failed GradYX by: " << std::abs(actual_Hessian[1*dimension+0] - GMLS_GradYX) << std::endl;
454  }
455  }
456  if (dimension>2) {
457  if(std::abs(actual_Hessian[2] - GMLS_GradXZ) > failure_tolerance) {
458  all_passed = false;
459  std::cout << i << " Failed GradXZ by: " << std::abs(actual_Hessian[2] - GMLS_GradXZ) << std::endl;
460  }
461  if(std::abs(actual_Hessian[1*dimension+2] - GMLS_GradYZ) > failure_tolerance) {
462  all_passed = false;
463  std::cout << i << " Failed GradYZ by: " << std::abs(actual_Hessian[1*dimension+2] - GMLS_GradYZ) << std::endl;
464  }
465  if(std::abs(actual_Hessian[2*dimension+0] - GMLS_GradZX) > failure_tolerance) {
466  all_passed = false;
467  std::cout << i << " Failed GradZX by: " << std::abs(actual_Hessian[2*dimension+0] - GMLS_GradZX) << std::endl;
468  }
469  if(std::abs(actual_Hessian[2*dimension+1] - GMLS_GradZY) > failure_tolerance) {
470  all_passed = false;
471  std::cout << i << " Failed GradZY by: " << std::abs(actual_Hessian[2*dimension+1] - GMLS_GradZY) << std::endl;
472  }
473  if(std::abs(actual_Hessian[2*dimension+2] - GMLS_GradZZ) > failure_tolerance) {
474  all_passed = false;
475  std::cout << i << " Failed GradZZ by: " << std::abs(actual_Hessian[2*dimension+2] - GMLS_GradZZ) << std::endl;
476  }
477  }
478 
479  // check curl
480  if (order > 2) { // reconstructed solution not in basis unless order greater than 2 used
481  double tmp_diff = 0;
482  if (dimension>1)
483  tmp_diff += std::abs(actual_Curl[0] - GMLS_CurlX) + std::abs(actual_Curl[1] - GMLS_CurlY);
484  if (dimension>2)
485  tmp_diff += std::abs(actual_Curl[2] - GMLS_CurlZ);
486  if(std::abs(tmp_diff) > failure_tolerance) {
487  all_passed = false;
488  std::cout << i << " Failed Curl by: " << std::abs(tmp_diff) << std::endl;
489  }
490  }
491  }
492 
493 
494  //! [Check That Solutions Are Correct]
495  // popRegion hidden from tutorial
496  // stop timing comparison loop
497  Kokkos::Profiling::popRegion();
498  //! [Finalize Program]
499 
500 
501 } // end of code block to reduce scope, causing Kokkos View de-allocations
502 // otherwise, Views may be deallocating when we call Kokkos::finalize() later
503 
504 // finalize Kokkos and MPI (if available)
505 Kokkos::finalize();
506 #ifdef COMPADRE_USE_MPI
507 MPI_Finalize();
508 #endif
509 
510 // output to user that test passed or failed
511 if(all_passed) {
512  fprintf(stdout, "Passed test \n");
513  return 0;
514 } else {
515  fprintf(stdout, "Failed test \n");
516  return -1;
517 }
518 
519 } // main
520 
521 
522 //! [Finalize Program]
Point evaluation of a scalar.
Lightweight Evaluator Helper This class is a lightweight wrapper for extracting and applying all rele...
KOKKOS_INLINE_FUNCTION void trueHessian(double *ans, double x, double y, double z, int order, int dimension)
PointCloudSearch< view_type > CreatePointCloudSearch(view_type src_view, const local_index_type dimensions=-1, const local_index_type max_leaf=-1)
CreatePointCloudSearch allows for the construction of an object of type PointCloudSearch with templat...
int main(int argc, char **argv)
Point evaluation of the curl of a vector (results in a vector)
Vector polynomial basis having # of components _dimensions, or (_dimensions-1) in the case of manifol...
Kokkos::View< output_data_type, output_array_layout, output_memory_space > applyFullPolynomialCoefficientsBasisToDataAllComponents(view_type_input_data sampling_data, bool scalar_as_vector_if_needed=true) const
Generation of polynomial reconstruction coefficients by applying to data in GMLS (allocates memory fo...
static KOKKOS_INLINE_FUNCTION int getNP(const int m, const int dimension=3, const ReconstructionSpace r_space=ReconstructionSpace::ScalarTaylorPolynomial)
Returns size of the basis for a given polynomial order and dimension General to dimension 1...
KOKKOS_INLINE_FUNCTION void trueGradient(double *ans, double x, double y, double z, int order, int dimension)
Kokkos::View< double **, layout_right, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_right_type
Point evaluation of the divergence of a vector (results in a scalar)
Kokkos::View< double **, layout_left, Kokkos::MemoryTraits< Kokkos::Unmanaged > > scratch_matrix_left_type
KOKKOS_INLINE_FUNCTION double trueLaplacian(double x, double y, double z, int order, int dimension)
Generalized Moving Least Squares (GMLS)
KOKKOS_INLINE_FUNCTION double curlTestSolution(double x, double y, double z, int component, int dimension)
KOKKOS_INLINE_FUNCTION double divergenceTestSamples(double x, double y, double z, int component, int dimension)
Kokkos::View< output_data_type, output_array_layout, output_memory_space > applyAlphasToDataAllComponentsAllTargetSites(view_type_input_data sampling_data, TargetOperation lro, const SamplingFunctional sro_in=PointSample, bool scalar_as_vector_if_needed=true, const int evaluation_site_local_index=0) const
Transformation of data under GMLS (allocates memory for output)
void setProblemData(view_type_1 neighbor_lists, view_type_2 source_coordinates, view_type_3 target_coordinates, view_type_4 epsilons)
Sets basic problem data (neighbor lists, source coordinates, and target coordinates) ...
KOKKOS_INLINE_FUNCTION double trueSolution(double x, double y, double z, int order, int dimension)
constexpr SamplingFunctional VectorPointSample
Point evaluations of the entire vector source function.
Point evaluation of the gradient of a vector (results in a matrix, NOT CURRENTLY IMPLEMENTED) ...
Point evaluation of a vector (reconstructs entire vector at once, requiring a ReconstructionSpace hav...