#include <Tpetra_Core.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include <Tpetra_MultiVector.hpp>
#include <Galeri_XpetraMaps.hpp>
#include <Galeri_XpetraMatrixTypes.hpp>
#include <Galeri_XpetraProblemFactory.hpp>
#include <Teuchos_Comm.hpp>
#include <Teuchos_CommHelpers.hpp>
#include <Teuchos_DefaultComm.hpp>
#include <Teuchos_oblackholestream.hpp>
#include "Teuchos_StandardCatchMacros.hpp"
#include "BelosTpetraAdapter.hpp"
template <typename ScalarType>
int run(int argc, char *argv[]) {
using ST = typename Tpetra::MultiVector<ScalarType>::scalar_type;
using LO = typename Tpetra::MultiVector<>::local_ordinal_type;
using GO = typename Tpetra::MultiVector<>::global_ordinal_type;
using NT = typename Tpetra::MultiVector<>::node_type;
using OP = typename Tpetra::Operator<ST,LO,GO,NT>;
using MV = typename Tpetra::MultiVector<ST,LO,GO,NT>;
using tmap_t = Tpetra::Map<LO,GO,NT>;
using tvector_t = Tpetra::Vector<ST,LO,GO,NT>;
using trowmatrix_t = Tpetra::RowMatrix<ST,LO,GO,NT>;
using tcrsmatrix_t = Tpetra::CrsMatrix<ST,LO,GO,NT>;
const auto comm = Tpetra::getDefaultComm();
const int myPID = comm->getRank();
bool verbose = false;
bool success = true;
try {
bool procVerbose = false;
bool debug = false;
bool pseudo = false;
int frequency = -1;
int blockSize = 1;
int numrhs = 1;
int maxIters = -1;
int maxSubspace = 50;
int maxRestarts = 15;
int nx = 10;
MT tol = 1.0e-5;
std::string ortho = "DGKS";
cmdp.
setOption(
"verbose",
"quiet",&verbose,
"Print messages and results.");
cmdp.
setOption(
"debug",
"nondebug",&debug,
"Print debugging information from solver.");
cmdp.
setOption(
"pseudo",
"block",&pseudo,
"Use pseudo-block or block GMRES solver.");
cmdp.
setOption(
"frequency",&frequency,
"Solvers frequency for printing residuals (#iters).");
cmdp.
setOption(
"tol",&tol,
"Relative residual tolerance used by GMRES solver.");
cmdp.
setOption(
"num-rhs",&numrhs,
"Number of right-hand sides to be solved for.");
cmdp.
setOption(
"block-size",&blockSize,
"Block size used by GMRES.");
cmdp.
setOption(
"max-iters",&maxIters,
"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
cmdp.
setOption(
"max-subspace",&maxSubspace,
"Maximum number of blocks the solver can use for the subspace.");
cmdp.
setOption(
"max-restarts",&maxRestarts,
"Maximum number of restarts allowed for GMRES solver.");
cmdp.
setOption(
"nx",&nx,
"Number of discretization points in each direction of 3D Laplacian.");
cmdp.
setOption(
"ortho",&ortho,
"Orthogonalization being used by GMRES solver.");
return -1;
}
if (!verbose)
frequency = -1;
procVerbose = ( verbose && (myPID==0) );
if (procVerbose) {
}
GaleriList.
set (
"n", nx * nx * nx);
GaleriList.
set (
"nx", nx);
GaleriList.
set (
"ny", nx);
GaleriList.
set (
"nz", nx);
auto Map = RCP{Galeri::Xpetra::CreateMap<ST,GO,tmap_t>("Cartesian3D", comm, GaleriList)};
auto GaleriProblem = Galeri::Xpetra::BuildProblem<ST,LO,GO,tmap_t,tcrsmatrix_t,MV>("Laplace3D", Map, GaleriList);
auto A = GaleriProblem->BuildMatrix();
RCP<MV> B =
rcp (
new MV (Map, numrhs));
RCP<MV> X =
rcp (
new MV (Map, numrhs));
RCP<MV> Xexact =
rcp (
new MV (Map, numrhs));
MVT::MvRandom(*Xexact);
OPT::Apply(*A, *Xexact, *B );
const int numGlobalElements = B->getGlobalLength();
if (maxIters == -1)
maxIters = numGlobalElements/blockSize - 1;
ParameterList belosList;
belosList.set( "Num Blocks", maxSubspace);
belosList.set( "Block Size", blockSize );
belosList.set( "Maximum Iterations", maxIters );
belosList.set( "Maximum Restarts", maxRestarts );
belosList.set( "Convergence Tolerance", tol );
belosList.set( "Orthogonalization", ortho );
if (verbose) {
if (frequency > 0)
belosList.set( "Output Frequency", frequency );
}
if (debug) {
}
belosList.set( "Verbosity", verbosity );
if (set == false) {
if (procVerbose)
std::cout << std::endl << "ERROR: Belos::LinearProblem failed to set up correctly!" << std::endl;
return -1;
}
RCP< Belos::SolverManager<ST,MV,OP> > newSolver;
if (pseudo && (blockSize == 1))
else
if (procVerbose) {
std::cout << std::endl << std::endl;
std::cout << "Dimension of matrix: " << numGlobalElements << std::endl;
std::cout << "Number of right-hand sides: " << numrhs << std::endl;
std::cout << "Block size used by solver: " << blockSize << std::endl;
std::cout << "Max number of restarts allowed: " << maxRestarts << std::endl;
std::cout << "Max number of Gmres iterations per linear system: " << maxIters << std::endl;
std::cout << "Relative residual tolerance: " << tol << std::endl;
std::cout << std::endl;
}
int numIters = newSolver->getNumIters();
if (procVerbose)
std::cout << "Number of iterations performed for this solve: " << numIters << std::endl;
bool badRes = false;
std::vector<ST> actualResids( numrhs );
std::vector<ST> rhsNorm( numrhs );
MV resid(Map, numrhs);
OPT::Apply( *A, *X, resid );
MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
MVT::MvNorm( resid, actualResids );
MVT::MvNorm( *B, rhsNorm );
if (procVerbose) {
std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
for ( int i=0; i<numrhs; i++) {
ST actRes = actualResids[i]/rhsNorm[i];
std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
if (actRes > tol) badRes = true;
}
}
success = false;
if (procVerbose)
std::cout << "End Result: TEST FAILED" << std::endl;
} else {
if (procVerbose)
std::cout << "End Result: TEST PASSED" << std::endl;
}
}
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}
int main(int argc, char *argv[]) {
return run<double>(argc,argv);
}