#include "BelosEpetraAdapter.hpp"
#include "Epetra_CrsMatrix.h"
#include "Epetra_MultiVector.h"
#include "Galeri_Maps.h"
#include "Galeri_CrsMatrices.h"
#include <Teuchos_oblackholestream.hpp>
#include <Teuchos_StandardCatchMacros.hpp>
#ifdef EPETRA_MPI
# include "Epetra_MpiComm.h"
#else
# include "Epetra_SerialComm.h"
#endif // EPETRA_MPI
int
main (int argc, char *argv[])
{
int MyPID = 0;
typedef double ST;
typedef SCT::magnitudeType MT;
#ifdef EPETRA_MPI
MPI_Init (&argc, &argv);
#else
#endif // EPETRA_MPI
bool verbose = false;
bool success = true;
try {
bool proc_verbose = false;
bool debug = false;
int frequency = -1;
int blocksize = 1;
int numrhs = 1;
int maxiters = -1;
int maxsubspace = 50;
int maxrestarts = 15;
int nx = 10;
MT tol = 1.0e-5;
cmdp.
setOption(
"verbose",
"quiet",&verbose,
"Print messages and results.");
cmdp.
setOption(
"debug",
"nondebug",&debug,
"Print debugging information from solver.");
cmdp.
setOption(
"frequency",&frequency,
"Solvers frequency for printing residuals (#iters).");
cmdp.
setOption(
"tol",&tol,
"Relative residual tolerance used by solver.");
cmdp.
setOption(
"num-rhs",&numrhs,
"Number of right-hand sides to be solved for.");
cmdp.
setOption(
"block-size",&blocksize,
"Block size used by solver.");
cmdp.
setOption(
"max-iters",&maxiters,
"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
cmdp.
setOption(
"max-subspace",&maxsubspace,
"Maximum number of blocks the solver can use for the subspace.");
cmdp.
setOption(
"max-restarts",&maxrestarts,
"Maximum number of restarts allowed for solver.");
cmdp.
setOption(
"nx",&nx,
"Number of discretization points in each direction of 2D Laplacian.");
return -1;
}
if (!verbose)
frequency = -1;
GaleriList.
set (
"n", nx * nx);
GaleriList.
set (
"nx", nx);
GaleriList.
set (
"ny", nx);
RCP<Epetra_Map> Map =
rcp (Galeri::CreateMap (
"Linear", Comm, GaleriList));
RCP<Epetra_RowMatrix> A =
rcp (Galeri::CreateCrsMatrix (
"Laplace2D", &*Map, GaleriList));
proc_verbose = verbose && (MyPID==0);
RCP<MV> B =
rcp (
new MV (*Map, numrhs));
RCP<MV> X =
rcp (
new MV (*Map, numrhs));
RCP<MV> Xexact =
rcp (
new MV (*Map, numrhs));
Xexact->Random ();
A->Apply( *Xexact, *B );
const int NumGlobalElements = B->GlobalLength();
if (maxiters == -1)
maxiters = NumGlobalElements/blocksize - 1;
ParameterList belosList;
belosList.set( "Num Blocks", maxsubspace);
belosList.set( "Block Size", blocksize );
belosList.set( "Maximum Iterations", maxiters );
belosList.set( "Maximum Restarts", maxrestarts );
belosList.set( "Convergence Tolerance", tol );
if (verbose) {
if (frequency > 0)
belosList.set( "Output Frequency", frequency );
}
if (debug) {
}
belosList.set( "Verbosity", verbosity );
if (set == false) {
if (proc_verbose)
std::cout << std::endl << "ERROR: Belos::LinearProblem failed to set up correctly!" << std::endl;
return -1;
}
std::string solverName = "Block GMRES";
RCP< Belos::SolverManager<double,MV,OP> > newSolver = factory.create (solverName,
rcp(&belosList,
false));
newSolver->setProblem(
rcp(&problem,
false) );
if (proc_verbose) {
std::cout << std::endl << std::endl;
std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
std::cout << "Number of right-hand sides: " << numrhs << std::endl;
std::cout << "Block size used by solver: " << blocksize << std::endl;
std::cout << "Max number of restarts allowed: " << maxrestarts << std::endl;
std::cout << "Max number of Gmres iterations per linear system: " << maxiters << std::endl;
std::cout << "Relative residual tolerance: " << tol << std::endl;
std::cout << std::endl;
}
int numIters = newSolver->getNumIters();
if (proc_verbose)
std::cout << "Number of iterations performed for this solve: " << numIters << std::endl;
bool badRes = false;
std::vector<double> actual_resids( numrhs );
std::vector<double> rhs_norm( numrhs );
OPT::Apply( *A, *X, resid );
MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
MVT::MvNorm( resid, actual_resids );
MVT::MvNorm( *B, rhs_norm );
if (proc_verbose) {
std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
for ( int i=0; i<numrhs; i++) {
double actRes = actual_resids[i]/rhs_norm[i];
std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
if (actRes > tol) badRes = true;
}
}
success = false;
if (proc_verbose)
std::cout << "End Result: TEST FAILED" << std::endl;
} else {
if (proc_verbose)
std::cout << "End Result: TEST PASSED" << std::endl;
}
}
#ifdef EPETRA_MPI
MPI_Finalize();
#endif
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}