Amesos2 - Direct Sparse Solver Interfaces  Version of the Day
SimpleSolve_File.cpp

Shows how you could use Amesos2 with Tpetra's MatrixMarket functionality.

// @HEADER
// *****************************************************************************
// Amesos2: Templated Direct Sparse Solver Package
//
// Copyright 2011 NTESS and the Amesos2 contributors.
// SPDX-License-Identifier: BSD-3-Clause
// *****************************************************************************
// @HEADER
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_RCP.hpp>
#include <Teuchos_oblackholestream.hpp>
#include <Teuchos_VerboseObject.hpp>
#include <Teuchos_CommandLineProcessor.hpp>
#include <Teuchos_StackedTimer.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_ParameterXMLFileReader.hpp>
#include <Tpetra_Core.hpp>
#include <Tpetra_Map.hpp>
#include <Tpetra_MultiVector.hpp>
#include <Tpetra_CrsMatrix.hpp>
// I/O for Matrix-Market files
#include <MatrixMarket_Tpetra.hpp>
#include <Tpetra_Import.hpp>
#include <Amesos2.hpp>
#include <Amesos2_Version.hpp>
#if defined(HAVE_AMESOS2_XPETRA) && defined(HAVE_AMESOS2_ZOLTAN2)
# include <Zoltan2_OrderingProblem.hpp>
# include <Zoltan2_PartitioningProblem.hpp>
# include <Zoltan2_TpetraRowGraphAdapter.hpp>
# include <Zoltan2_TpetraCrsMatrixAdapter.hpp>
# include <Zoltan2_XpetraMultiVectorAdapter.hpp>
#endif
int main(int argc, char *argv[]) {
Tpetra::ScopeGuard tpetraScope(&argc,&argv);
typedef Tpetra::CrsMatrix<>::scalar_type Scalar;
typedef Tpetra::Map<>::local_ordinal_type LO;
typedef Tpetra::Map<>::global_ordinal_type GO;
typedef Tpetra::Map<>::node_type NO;
typedef Tpetra::RowGraph<LO, GO, NO> Graph;
typedef Tpetra::CrsMatrix<Scalar,LO,GO> MAT;
typedef Tpetra::MultiVector<Scalar,LO,GO> MV;
using Tpetra::global_size_t;
using Tpetra::Map;
using Tpetra::Import;
using Teuchos::RCP;
using Teuchos::rcp;
//
// Get the default communicator
//
Teuchos::RCP<const Teuchos::Comm<int> > comm = Tpetra::getDefaultComm();
int myRank = comm->getRank();
Teuchos::oblackholestream blackhole;
bool printMatrix = false;
bool printSolution = false;
bool checkSolution = false;
bool printTiming = false;
bool useStackedTimer = false;
bool allprint = false;
bool verbose = (myRank==0);
bool useZoltan2 = false;
bool useParMETIS = false;
std::string mat_filename("arc130.mtx");
std::string rhs_filename("");
std::string solvername("Superlu");
std::string xml_filename("");
Teuchos::CommandLineProcessor cmdp(false,true);
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("filename",&mat_filename,"Filename for Matrix-Market test matrix.");
cmdp.setOption("rhs_filename",&rhs_filename,"Filename for Matrix-Market right-hand-side.");
cmdp.setOption("solvername",&solvername,"Name of solver.");
cmdp.setOption("xml_filename",&xml_filename,"XML Filename for Solver parameters.");
cmdp.setOption("print-matrix","no-print-matrix",&printMatrix,"Print the full matrix after reading it.");
cmdp.setOption("print-solution","no-print-solution",&printSolution,"Print solution vector after solve.");
cmdp.setOption("check-solution","no-check-solution",&checkSolution,"Check solution vector after solve.");
cmdp.setOption("use-zoltan2","no-zoltan2",&useZoltan2,"Use Zoltan2 (Hypergraph) for repartitioning");
cmdp.setOption("use-parmetis","no-parmetis",&useParMETIS,"Use ParMETIS for repartitioning");
cmdp.setOption("print-timing","no-print-timing",&printTiming,"Print solver timing statistics");
cmdp.setOption("use-stacked-timer","no-stacked-timer",&useStackedTimer,"Use StackedTimer to print solver timing statistics");
cmdp.setOption("all-print","root-print",&allprint,"All processors print to out");
if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
return -1;
}
std::ostream& out = ( (allprint || (myRank == 0)) ? std::cout : blackhole );
RCP<Teuchos::FancyOStream> fos = Teuchos::fancyOStream(Teuchos::rcpFromRef(out));
// Say hello
out << myRank << " : " << Amesos2::version() << " on " << comm->getSize() << " MPIs" << std::endl << std::endl;
const size_t numVectors = 1;
// Read matrix
RCP<const MAT> A = Tpetra::MatrixMarket::Reader<MAT>::readSparseFile(mat_filename, comm);
// get the map (Range Map used for both X & B)
RCP<const Map<LO,GO> > rngmap = A->getRangeMap();
RCP<const Map<LO,GO> > dmnmap = A->getDomainMap();
GO nrows = A->getGlobalNumRows();
// Create random X
RCP<MV> X = rcp(new MV(dmnmap,numVectors));
X->randomize();
// Create B
RCP<MV> B = rcp(new MV(rngmap,numVectors));
if (rhs_filename == "") {
/*
* Use RHS:
*
* [[10]
* [10]
* [10]
* [10]
* [10]
* [10]]
*/
B->putScalar(10);
} else {
B = Tpetra::MatrixMarket::Reader<MAT>::readDenseFile (rhs_filename, comm, rngmap);
}
if (useZoltan2 || useParMETIS) {
#if defined(HAVE_AMESOS2_XPETRA) && defined(HAVE_AMESOS2_ZOLTAN2)
// Specify partitioning parameters
Teuchos::ParameterList zoltan_params;
zoltan_params.set("partitioning_approach", "partition");
//
if (useParMETIS) {
if (comm->getRank() == 0) {
std::cout << "Using Zoltan2(ParMETIS)" << std::endl;
}
zoltan_params.set("algorithm", "parmetis");
zoltan_params.set("symmetrize_input", "transpose");
zoltan_params.set("partitioning_objective", "minimize_cut_edge_weight");
} else {
if (comm->getRank() == 0) {
std::cout << "Using Zoltan2(HyperGraph)" << std::endl;
}
zoltan_params.set("algorithm", "phg");
}
// Create an input adapter for the Tpetra matrix.
Zoltan2::TpetraRowGraphAdapter<Graph>
zoltan_graph(A->getGraph());
// Create and solve partitioning problem
Zoltan2::PartitioningProblem<Zoltan2::TpetraRowGraphAdapter<Graph>>
problem(&zoltan_graph, &zoltan_params);
problem.solve();
// Redistribute matrix
RCP<MAT> zoltan_A;
Zoltan2::TpetraCrsMatrixAdapter<MAT> zoltan_matrix(A);
zoltan_matrix.applyPartitioningSolution (*A, zoltan_A, problem.getSolution());
// Set it as coefficient matrix, and update range map
A = zoltan_A;
rngmap = A->getRangeMap();
// Redistribute RHS
RCP<MV> zoltan_b;
Zoltan2::XpetraMultiVectorAdapter<MV> adapterRHS(rcpFromRef (*B));
adapterRHS.applyPartitioningSolution (*B, zoltan_b, problem.getSolution());
// Set it as RHS
B = zoltan_b;
// Redistribute Sol
RCP<MV> zoltan_x;
Zoltan2::XpetraMultiVectorAdapter<MV> adapterSol(rcpFromRef (*X));
adapterSol.applyPartitioningSolution (*X, zoltan_x, problem.getSolution());
// Set it as Sol
X = zoltan_x;
#else
TEUCHOS_TEST_FOR_EXCEPTION(
useZoltan2, std::invalid_argument,
"Both Xpetra and Zoltan2 are needed to use Zoltan2.");
#endif
}
if( printMatrix ){
A->describe(*fos, Teuchos::VERB_EXTREME);
}
else if( verbose ){
std::cout << std::endl << A->description() << std::endl << std::endl;
}
// Constructor from Factory
RCP<Amesos2::Solver<MAT,MV> > solver;
if( !Amesos2::query(solvername) ){
*fos << solvername << " solver not enabled. Exiting..." << std::endl;
return EXIT_SUCCESS;
}
solver = Amesos2::create<MAT,MV>(solvername, A, X, B);
if (xml_filename != "") {
Teuchos::ParameterList test_params =
Teuchos::ParameterXMLFileReader(xml_filename).getParameters();
Teuchos::ParameterList& amesos2_params = test_params.sublist("Amesos2");
*fos << amesos2_params.currentParametersString() << std::endl;
solver->setParameters( Teuchos::rcpFromRef(amesos2_params) );
}
RCP<Teuchos::StackedTimer> stackedTimer;
if(useStackedTimer) {
stackedTimer = rcp(new Teuchos::StackedTimer("Amesos2 SimpleSolve-File"));
Teuchos::TimeMonitor::setStackedTimer(stackedTimer);
}
solver->symbolicFactorization().numericFactorization().solve();
if(useStackedTimer) {
stackedTimer->stopBaseTimer();
}
if( printSolution ){
// Print the solution
RCP<Map<LO,GO> > root_map
= rcp( new Map<LO,GO>(nrows,myRank == 0 ? nrows : 0,0,comm) );
RCP<MV> Xhat = rcp( new MV(root_map,numVectors) );
RCP<Import<LO,GO> > importer = rcp( new Import<LO,GO>(rngmap,root_map) );
if( allprint ){
if( myRank == 0 ) *fos << "Solution :" << std::endl;
Xhat->describe(*fos,Teuchos::VERB_EXTREME);
*fos << std::endl;
} else {
Xhat->doImport(*X,*importer,Tpetra::REPLACE);
if( myRank == 0 ){
*fos << "Solution :" << std::endl;
Xhat->describe(*fos,Teuchos::VERB_EXTREME);
*fos << std::endl;
}
}
}
if( checkSolution ){
const Scalar one = Teuchos::ScalarTraits<Scalar>::one ();
RCP<MV> R = rcp(new MV(rngmap,numVectors));
A->apply(*X, *R);
R->update(one, *B, -one);
for (size_t j = 0; j < numVectors; ++j) {
auto Rj = R->getVector(j);
auto Bj = B->getVector(j);
auto r_norm = Rj->norm2();
auto b_norm = Bj->norm2();
if (myRank == 0) {
*fos << "Relative Residual norm = " << r_norm << " / " << b_norm << " = "
<< r_norm / b_norm << std::endl;
}
}
if (myRank == 0) *fos << std::endl;
}
if(useStackedTimer) {
Teuchos::StackedTimer::OutputOptions options;
options.num_histogram=3;
options.print_warnings = false;
options.output_histogram = true;
options.output_fraction=true;
options.output_minmax = true;
stackedTimer->report(std::cout, comm, options);
} else if( printTiming ){
// Print some timing statistics
solver->printTiming(*fos);
} else {
Teuchos::TimeMonitor::summarize();
}
// We are done.
return 0;
}