Amesos2 - Direct Sparse Solver Interfaces  Version of the Day
SimpleSolve.cpp

Shows how to create an Amesos2 solver using the Amesos2::create() factory method interface, followed by solving a small linear system.

// @HEADER
// *****************************************************************************
// Amesos2: Templated Direct Sparse Solver Package
//
// Copyright 2011 NTESS and the Amesos2 contributors.
// SPDX-License-Identifier: BSD-3-Clause
// *****************************************************************************
// @HEADER
#include <Teuchos_ScalarTraits.hpp>
#include <Teuchos_RCP.hpp>
#include <Teuchos_oblackholestream.hpp>
#include <Teuchos_Tuple.hpp>
#include <Teuchos_VerboseObject.hpp>
#include <Teuchos_StackedTimer.hpp>
#include <Teuchos_ParameterList.hpp>
#include <Teuchos_ParameterXMLFileReader.hpp>
#include <Tpetra_Core.hpp>
#include <Tpetra_Map.hpp>
#include <Tpetra_MultiVector.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include "Amesos2.hpp"
#include "Amesos2_Version.hpp"
#if defined(HAVE_AMESOS2_XPETRA) && defined(HAVE_AMESOS2_GALERI)
#include "Galeri_XpetraMaps.hpp"
#include "Galeri_XpetraProblemFactory.hpp"
#endif
int main(int argc, char *argv[]) {
Tpetra::ScopeGuard tpetraScope(&argc,&argv);
typedef Tpetra::CrsMatrix<>::scalar_type Scalar;
typedef Tpetra::Map<>::local_ordinal_type LO;
typedef Tpetra::Map<>::global_ordinal_type GO;
typedef Tpetra::Map<LO,GO> MAP;
typedef Tpetra::CrsMatrix<Scalar,LO,GO> MAT;
typedef Tpetra::MultiVector<Scalar,LO,GO> MV;
using Tpetra::global_size_t;
using Teuchos::tuple;
using Teuchos::RCP;
using Teuchos::rcp;
bool verbose = false;
GO nx = 1;
std::string GaleriName3D {"Laplace3D"};
std::string solvername("Superlu");
std::string xml_filename("");
Teuchos::CommandLineProcessor cmdp(false,true);
cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
cmdp.setOption("solvername",&solvername,"Name of solver.");
cmdp.setOption("xml_filename",&xml_filename,"XML Filename for Solver parameters.");
cmdp.setOption("nx",&nx,"Dimension of 3D problem.");
cmdp.setOption ("galeriMatrixName", &GaleriName3D, "Name of 3D Galeri Matrix");
if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
return -1;
}
// Before we do anything, check that SuperLU is enabled
if( !Amesos2::query(solvername) ){
std::cerr << solvername << " not enabled. Exiting..." << std::endl;
return EXIT_SUCCESS; // Otherwise CTest will pick it up as
// failure, which it isn't really
}
Teuchos::RCP<const Teuchos::Comm<int> > comm =
Tpetra::getDefaultComm();
size_t myRank = comm->getRank();
std::ostream &out = std::cout;
out << Amesos2::version() << std::endl << std::endl;
const size_t numVectors = 1;
RCP<MAT> A;
RCP<const MAP> map;
if (nx > 0) {
#if defined(HAVE_AMESOS2_XPETRA) && defined(HAVE_AMESOS2_GALERI)
typedef Galeri::Xpetra::Problem<MAP, MAT, MV> Galeri_t;
Teuchos::ParameterList galeriList;
Tpetra::global_size_t nGlobalElements = nx * nx * nx;
galeriList.set("nx", nx);
galeriList.set("ny", nx);
galeriList.set("nz", nx);
if (GaleriName3D == "Elasticity3D") {
GO mx = 1;
galeriList.set("mx", mx);
galeriList.set("my", mx);
galeriList.set("mz", mx);
nGlobalElements *= 3;
}
map = rcp(new MAP(nGlobalElements, 0, comm));
RCP<Galeri_t> galeriProblem =
Galeri::Xpetra::BuildProblem<Scalar, LO, GO, MAP, MAT, MV>
(GaleriName3D, map, galeriList);
A = galeriProblem->BuildMatrix();
#else
std::cerr << "Galeri or Xpetra not enabled. Exiting..." << std::endl;
return EXIT_SUCCESS; // Otherwise CTest will pick it up as
#endif
} else {
// create a Map
global_size_t nrows = 6;
map = rcp( new MAP(nrows,0,comm) );
RCP<MAT> A = rcp( new MAT(map,3) ); // max of three entries in a row
/*
* We will solve a system with a known solution, for which we will be using
* the following matrix:
*
* [ [ 7, 0, -3, 0, -1, 0 ]
* [ 2, 8, 0, 0, 0, 0 ]
* [ 0, 0, 1, 0, 0, 0 ]
* [ -3, 0, 0, 5, 0, 0 ]
* [ 0, -1, 0, 0, 4, 0 ]
* [ 0, 0, 0, -2, 0, 6 ] ]
*
*/
// Construct matrix
if( myRank == 0 ){
A->insertGlobalValues(0,tuple<GO>(0,2,4),tuple<Scalar>(7,-3,-1));
A->insertGlobalValues(1,tuple<GO>(0,1),tuple<Scalar>(2,8));
A->insertGlobalValues(2,tuple<GO>(2),tuple<Scalar>(1));
A->insertGlobalValues(3,tuple<GO>(0,3),tuple<Scalar>(-3,5));
A->insertGlobalValues(4,tuple<GO>(1,4),tuple<Scalar>(-1,4));
A->insertGlobalValues(5,tuple<GO>(3,5),tuple<Scalar>(-2,6));
}
A->fillComplete();
}
// Create X
RCP<MV> X = rcp(new MV(map,numVectors));
X->putScalar(1);
/* Create B */
RCP<MV> B = rcp(new MV(map,numVectors));
A->apply(*X, *B);
X->randomize();
// Create solver interface with Amesos2 factory method
RCP<Amesos2::Solver<MAT,MV> > solver = Amesos2::create<MAT,MV>(solvername, A, X, B);
if (xml_filename != "") {
Teuchos::ParameterList test_params =
Teuchos::ParameterXMLFileReader(xml_filename).getParameters();
Teuchos::ParameterList& amesos2_params = test_params.sublist("Amesos2");
solver->setParameters( Teuchos::rcpFromRef(amesos2_params) );
}
RCP<Teuchos::StackedTimer> stackedTimer;
stackedTimer = rcp(new Teuchos::StackedTimer("Amesos2 SimpleSolve-File"));
Teuchos::TimeMonitor::setStackedTimer(stackedTimer);
{
solver->symbolicFactorization().numericFactorization().solve();
}
stackedTimer->stopBaseTimer();
{
Teuchos::StackedTimer::OutputOptions options;
options.num_histogram=3;
options.print_warnings = false;
options.output_histogram = true;
options.output_fraction=true;
options.output_minmax = true;
stackedTimer->report(std::cout, comm, options);
}
if (verbose) {
/* Print the solution
*
* Should be:
*
* [[1]
* [1]
* [1]
* [1]
* [1]
* [1]]
*/
RCP<Teuchos::FancyOStream> fos = Teuchos::fancyOStream(Teuchos::rcpFromRef(out));
*fos << "Solution :" << std::endl;
X->describe(*fos,Teuchos::VERB_EXTREME);
*fos << std::endl;
}
// We are done.
return 0;
}