MueLu  Version of the Day
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MueLu_AggregationPhase3Algorithm_kokkos_def.hpp
Go to the documentation of this file.
1 // @HEADER
2 //
3 // ***********************************************************************
4 //
5 // MueLu: A package for multigrid based preconditioning
6 // Copyright 2012 Sandia Corporation
7 //
8 // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
9 // the U.S. Government retains certain rights in this software.
10 //
11 // Redistribution and use in source and binary forms, with or without
12 // modification, are permitted provided that the following conditions are
13 // met:
14 //
15 // 1. Redistributions of source code must retain the above copyright
16 // notice, this list of conditions and the following disclaimer.
17 //
18 // 2. Redistributions in binary form must reproduce the above copyright
19 // notice, this list of conditions and the following disclaimer in the
20 // documentation and/or other materials provided with the distribution.
21 //
22 // 3. Neither the name of the Corporation nor the names of the
23 // contributors may be used to endorse or promote products derived from
24 // this software without specific prior written permission.
25 //
26 // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
27 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
30 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 //
38 // Questions? Contact
39 // Jonathan Hu (jhu@sandia.gov)
40 // Andrey Prokopenko (aprokop@sandia.gov)
41 // Ray Tuminaro (rstumin@sandia.gov)
42 //
43 // ***********************************************************************
44 //
45 // @HEADER
46 #ifndef MUELU_AGGREGATIONPHASE3ALGORITHM_KOKKOS_DEF_HPP
47 #define MUELU_AGGREGATIONPHASE3ALGORITHM_KOKKOS_DEF_HPP
48 
49 #ifdef HAVE_MUELU_KOKKOS_REFACTOR
50 
51 #include <Teuchos_Comm.hpp>
52 #include <Teuchos_CommHelpers.hpp>
53 
54 #include <Xpetra_Vector.hpp>
55 
57 
58 #include "MueLu_Aggregates_kokkos.hpp"
59 #include "MueLu_Exceptions.hpp"
60 #include "MueLu_LWGraph_kokkos.hpp"
61 #include "MueLu_Monitor.hpp"
62 
63 namespace MueLu {
64 
65  // Try to stick unaggregated nodes into a neighboring aggregate if they are
66  // not already too big. Otherwise, make a new aggregate
67  template <class LocalOrdinal, class GlobalOrdinal, class Node>
68  void AggregationPhase3Algorithm_kokkos<LocalOrdinal, GlobalOrdinal, Node>::
69  BuildAggregates(const ParameterList& params,
70  const LWGraph_kokkos& graph,
71  Aggregates_kokkos& aggregates,
73  LO& numNonAggregatedNodes) const {
74  Monitor m(*this, "BuildAggregates");
75 
76  using memory_space = typename LWGraph_kokkos::memory_space;
77 
79  = Kokkos::create_mirror(aggstat);
80  Kokkos::deep_copy(aggstatHost, aggstat);
81  std::vector<unsigned> aggStat;
82  aggStat.resize(aggstatHost.extent(0));
83  for(size_t idx = 0; idx < aggstatHost.extent(0); ++idx) {
84  aggStat[idx] = aggstatHost(idx);
85  }
86 
87  bool makeNonAdjAggs = false;
88  bool error_on_isolated = false;
89  if(params.isParameter("aggregation: error on nodes with no on-rank neighbors"))
90  error_on_isolated = params.get<bool>("aggregation: error on nodes with no on-rank neighbors");
91  if(params.isParameter("aggregation: phase3 avoid singletons"))
92  makeNonAdjAggs = params.get<bool>("aggregation: phase3 avoid singletons");
93 
94  const LO numRows = graph.GetNodeNumVertices();
95  const int myRank = graph.GetComm()->getRank();
96 
97  ArrayRCP<LO> vertex2AggId = aggregates.GetVertex2AggId()->getDataNonConst(0);
98  ArrayRCP<LO> procWinner = aggregates.GetProcWinner() ->getDataNonConst(0);
99 
100  LO numLocalAggregates = aggregates.GetNumAggregates();
101 
102  for (LO i = 0; i < numRows; i++) {
103  if (aggStat[i] == AGGREGATED || aggStat[i] == IGNORED)
104  continue;
105 
106  auto neighOfINode = graph.getNeighborVertices(i);
107 
108  // We don't want a singleton. So lets see if there is an unaggregated
109  // neighbor that we can also put with this point.
110  bool isNewAggregate = false;
111  bool failedToAggregate = true;
112  for (int j = 0; j < as<int>(neighOfINode.length); j++) {
113  LO neigh = neighOfINode(j);
114 
115  if (neigh != i && graph.isLocalNeighborVertex(neigh) && aggStat[neigh] == READY) {
116  isNewAggregate = true;
117 
118  aggStat [neigh] = AGGREGATED;
119  vertex2AggId[neigh] = numLocalAggregates;
120  procWinner [neigh] = myRank;
121 
122  numNonAggregatedNodes--;
123  }
124  }
125 
126  if (isNewAggregate) {
127  // Create new aggregate (not singleton)
128  aggStat [i] = AGGREGATED;
129  procWinner [i] = myRank;
130  numNonAggregatedNodes--;
131  aggregates.SetIsRoot(i);
132  vertex2AggId[i] = numLocalAggregates++;
133 
134  failedToAggregate = false;
135  } else {
136  // We do not want a singleton, but there are no non-aggregated
137  // neighbors. Lets see if we can connect to any other aggregates
138  // NOTE: This is very similar to phase 2b, but simpler: we stop with
139  // the first found aggregate
140  int j = 0;
141  for (; j < as<int>(neighOfINode.length); j++) {
142  LO neigh = neighOfINode(j);
143 
144  // We don't check (neigh != rootCandidate), as it is covered by checking (aggStat[neigh] == AGGREGATED)
145  if (graph.isLocalNeighborVertex(neigh) && aggStat[neigh] == AGGREGATED)
146  break;
147  }
148 
149  if (j < as<int>(neighOfINode.length)) {
150  // Assign to an adjacent aggregate
151  vertex2AggId[i] = vertex2AggId[neighOfINode(j)];
152  numNonAggregatedNodes--;
153  failedToAggregate = false;
154  }
155  }
156 
157  if (failedToAggregate && makeNonAdjAggs) {
158  // it we are still didn't find an aggregate home for i (i.e., we have
159  // a potential singleton), we are desperate. Basically, we seek to
160  // group i with any other local point to form an aggregate (even if
161  // it is not a neighbor of i. Either we find a vertex that is already
162  // aggregated or not aggregated.
163  // 1) if found vertex is aggregated, then assign i to this aggregate
164  // 2) if found vertex is not aggregated, create new aggregate
165 
166 
167  for (LO ii = 0; ii < numRows; ii++) { // look for anyone else
168  if ( (ii != i) && (aggStat[ii] != IGNORED) ) {
169  failedToAggregate = false; // found someone so start
170  aggStat[i] = AGGREGATED; // marking i as aggregated
171  procWinner[i]= myRank;
172 
173  if (aggStat[ii] == AGGREGATED)
174  vertex2AggId[i] = vertex2AggId[ii];
175  else {
176  vertex2AggId[i] = numLocalAggregates;
177  vertex2AggId[ii] = numLocalAggregates;
178  aggStat [ii] = AGGREGATED;
179  procWinner [ii] = myRank;
180  numNonAggregatedNodes--; // acounts for ii now being aggregated
181  aggregates.SetIsRoot(i);
182  numLocalAggregates++;
183  }
184  numNonAggregatedNodes--; // accounts for i now being aggregated
185  break;
186  } //if ( (ii != i) && (aggStat[ii] != IGNORED ...
187  } //for (LO ii = 0; ...
188  }
189  if (failedToAggregate) {
190  if (error_on_isolated) {
191  // Error on this isolated node, as the user has requested
192  std::ostringstream oss;
193  oss<<"MueLu::AggregationPhase3Algorithm::BuildAggregates: MueLu has detected a non-Dirichlet node that has no on-rank neighbors and is terminating (by user request). "<<std::endl;
194  oss<<"If this error is being generated at level 0, this is due to an initial partitioning problem in your matrix."<<std::endl;
195  oss<<"If this error is being generated at any other level, try turning on repartitioning, which may fix this problem."<<std::endl;
196  throw Exceptions::RuntimeError(oss.str());
197  } else {
198  // Create new aggregate (singleton)
199  this->GetOStream(Warnings1) << "Found singleton: " << i << std::endl;
200 
201  aggregates.SetIsRoot(i);
202  vertex2AggId[i] = numLocalAggregates++;
203  numNonAggregatedNodes--;
204  }
205  }
206 
207  // One way or another, the node is aggregated (possibly into a singleton)
208  aggStat [i] = AGGREGATED;
209  procWinner[i] = myRank;
210 
211  }
212 
213  for(size_t idx = 0; idx < aggstatHost.extent(0); ++idx) {
214  aggstatHost(idx) = aggStat[idx];
215  }
216  Kokkos::deep_copy(aggstat, aggstatHost);
217 
218  // update aggregate object
219  aggregates.SetNumAggregates(numLocalAggregates);
220  }
221 
222 } // end namespace
223 
224 #endif // HAVE_MUELU_KOKKOS_REFACTOR
225 #endif // MUELU_AGGREGATIONPHASE3ALGORITHM_KOKKOS_DEF_HPP
LocalOrdinal LO
void deep_copy(const View< DT, DP...> &dst, typename ViewTraits< DT, DP...>::const_value_type &value, typename std::enable_if< std::is_same< typename ViewTraits< DT, DP...>::specialize, void >::value >::type *=0)
Additional warnings.
KOKKOS_INLINE_FUNCTION constexpr std::enable_if< std::is_integral< iType >::value, size_t >::type extent(const iType &r) const noexcept