Galeri  Development
 All Classes Files Functions Variables Pages
AdvDiff2D.cpp
// @HEADER
// ************************************************************************
//
// Galeri: Finite Element and Matrix Generation Package
// Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER
#include "Galeri_Utils.h"
#include "Galeri_FiniteElements.h"
#ifdef HAVE_MPI
#include "mpi.h"
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
using namespace Galeri;
using namespace Galeri::FiniteElements;
// ==========================================================
// This file solves the scalar problem
//
// - \mu \nabla u + c_x * u_x + c_y * u_y = f on \Omega
// u = g on \partial \Omega
//
// where \Omega is a 2D rectangle, divided into triangles.
// `f' is specified by function `Force()', the Dirichlet boundary condition
// by function `BoundaryValue()', and the value of \mu and
// c_x and c_y can be changed in the functions Diffusion() and
// ConvX() and ConvY(). The code solves the corresponding
// linear system using a simple LAPACK interface, and writes
// the solution inot a MEDIT-compatible format.
//
// \author Marzio Sala, ETHZ/COLAB
//
// \date Last updated on 15-Sep-05.
// ==========================================================
double Diffusion(const double& x, const double& y, const double& z)
{
return (1.0);
}
double conv = 5000;
double ConvX(const double& x, const double& y, const double& z)
{
return (conv);
}
double ConvY(const double& x, const double& y, const double& z)
{
return (-conv);
}
double ConvZ(const double& x, const double& y, const double& z)
{
return (0.0);
}
double Source(const double& x, const double& y, const double& z)
{
return (0.0);
}
double Force(const double& x, const double& y, const double& z)
{
return (0.0);
}
// Specifies the boundary condition.
double BoundaryValue(const double& x, const double& y,
const double& z, const int& Patch)
{
if ((x == 0.0 && y >= 0.0) || (y == 1.0 && x <= 0.2))
return(1.0);
else
return (0.0);
}
int BoundaryType(const int& Patch)
{
return(GALERI_DIRICHLET);
}
// =========== //
// main driver //
// =========== //
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
MPI_Init(&argc,&argv);
Epetra_MpiComm Comm(MPI_COMM_WORLD);
#else
Epetra_SerialComm Comm;
#endif
try {
// ================================================== //
// Defines the grid for this problem, a rectangle, //
// with the number of nodes along the X-axis (nx) and //
// Y-axis (ny), the length of the rectangle along the //
// axes, and the number of processors on each axix. //
// ================================================== //
// int nx = 40 * Comm.NumProc(); // unused
// int ny = 40; // unused
// int mx = Comm.NumProc(); // unused
// int my = 1; // unused
//TriangleRectangleGrid Grid(Comm, nx, ny, mx, my);
FileGrid Grid(Comm, "Square.grid");
// ======================================================== //
// Prepares the linear system. This requires the definition //
// of a quadrature formula compatible with the grid, a //
// variational formulation, and a problem object which take //
// care of filling matrix and right-hand side. //
// ======================================================== //
Epetra_CrsMatrix A(Copy, Grid.RowMap(), 0);
Epetra_Vector LHS(Grid.RowMap());
Epetra_Vector RHS(Grid.RowMap());
int NumQuadratureNodes = 3;
AdvDiff(NumQuadratureNodes, Diffusion, ConvX, ConvY, ConvZ,
Source, Force, BoundaryValue, BoundaryType);
LinearProblem FiniteElementProblem(Grid, AdvDiff, A, LHS, RHS);
FiniteElementProblem.Compute();
// =================================================== //
// The solution must be computed here by solving the //
// linear system A * LHS = RHS. //
//
// NOTE: Solve() IS A SIMPLE FUNCTION BASED ON LAPACK, //
// THEREFORE THE MATRIX IS CONVERTED TO DENSE FORMAT. //
// IT WORKS IN SERIAL ONLY. //
// EVEN MEDIUM-SIZED MATRICES MAY REQUIRE A LOT OF //
// MEMORY AND CPU-TIME! USERS SHOULD CONSIDER INSTEAD //
// AZTECOO, ML, IFPACK OR OTHER SOLVERS. //
// =================================================== //
Solve(&A, &LHS, &RHS);
// ================== //
// Output using MEDIT //
// ================== //
MEDITInterface MEDIT(Comm);
MEDIT.Write(Grid, "AdvDiff2D", LHS);
}
catch (int e) {
cerr << "Caught exception, value = " << e << endl;
}
catch (...) {
cerr << "Caught generic exception" << endl;
}
#ifdef HAVE_MPI
MPI_Finalize();
#endif
return(0);
}