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Abstract

Engineering and scientific applications are becoming increasingly modular, utilizing
publicly defined interfaces to integrate third party tools and libraries for services such as mesh
generation, data partitioning, equation solvers and optimization. As a result, it is important to
understand and model the interactions between these various modules, and to develop good
abstract interfaces between them. One category of modules that is becoming increasingly
important is abstract numerical algorithms (ANAs). ANAs such as linear and nonlinear
equation solvers, methods for stability and bifurcation analysis, uncertainty quantification
methods and nonlinear programming solvers for optimization are typically mathematically
sophisticated but have surprisingly little essential dependence on the details of what computer
system is being used or how matrices and vectors are stored and computed. As a result, using
abstract interface capabilities in languages such as C++, we can implement ANA software
that it will work, unchanged, with a variety of applications and linear algebra libraries.

In this paper, we provide an overview of the Thyra effort which at its most basic level
defines fundamental abstract linear operator and vector interfaces. These linear
operator/vector interfaces provide the basic functionality and interoperability for a broad
range of ANAs. Many other higher-level abstractions are built on top of the Thyra
operator/vector interfaces. The Trilinos package Thyra defines these different sets of C++
interfaces and provides optional support software.
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1 Introduction

One area of steady improvement in large-scale engineering and scientific applications is the
increased modularity of application design and development. Specification of publicly-defined
interfaces, combined with the use of third-party software to satisfy critical technology needs in
areas such as mesh generation, data partitioning and solution methods have been generally
positive developments in application design. While the use of third party software introduces
dependencies from the application developer’s perspective, it also gives the application access to
the latest technology in these areas, amortizes library and tool development across multiple
applications and, if properly designed, gives the application easy access to more than one option
for each critical technology area, e.g., access to multiple linear solver packages.

One category of modules that is becoming increasingly important is abstract numerical
algorithms (ANAs). ANAs such as linear and nonlinear equation solvers, methods for stability
and bifurcation analysis, transient solvers, uncertainty quantification methods, and nonlinear
programming solvers for optimization are typically mathematically sophisticated but have
surprisingly little essential dependence on the details of what computer system is being used or
how matrices and vectors are stored and computed. Thus, by using abstract interface capabilities
in languages such as C++, we can implement ANA software such that it will work, unchanged,
with a variety of applications and linear algebra libraries.

Here we describe a set of abstract operator/vector interfaces that allows the specification of ANAs
from basic Krylov linear equation solvers all the way up to interior-point methods for
optimization. At the core, we define a set of basic operator/vector interfaces that form the the
foundation for (i) ANA development, (ii) the integration of an ANA into an application (APP)
and (iii) providing services to the ANA from a linear algebra library (LAL). By agreeing on a
simple minimal common interface layer such as the Thyra Fundamental ANA Operator/Vector
Interfaces described here, we eliminate the many-to-many dependency problem of ANA/APP
interfaces.

It is difficult to describe a set of linear algebra interfaces outside of the context of some class of
numerical problems. For this purpose, we will consider numerical algorithms where it is possible
to implement all of the required operations exclusively through well defined interfaces to vectors,
vector spaces, and linear operators and higher level abstractions built on these. The fundamental
Thyra operator/vector interfaces described here are the common denominator of all abstract
numerical algorithms.

We assume that the reader has a basic understanding of vector reduction/transformation
operators (RTOp) [3], is comfortable with object-orientation [11] and C++, and knows how to
read basic Unified Modeling Language (UML) [10] class diagrams. We also assume that the
reader has some background in large-scale numerics and will therefore be able to appreciate the
challenges that are addressed by Thyra.

Note that the online documentation for Thyra at

http://trilinos.sandia.gov/packages/thyra

should be the definitive information source for Thyra. This document only tries to provide an
overview of Thyra and explain the philosophy behind it.
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2 Classification of linear algebra and other interfaces

Although we will discuss APPs, ANAs and LALs in detail later in this section, we want to briefly
introduce these terms here to make them clear. Also, although there are certainly other types of
modules in a large-scale scientific/engineering application, we only focus on these three since they
are the ones more directly related to ANAs.

• Application (APP): The modules of an application that are not ANA or LAL modules.
Typically this includes the code that is unique to the application itself such as the code that
formulates and generates the discrete problem to be solved. In general it would also include
other third-party software that is not an ANA or LAL module.

• Abstract Numerical Algorithm (ANA): Software that drives a solution process, e.g., an
iterative linear or nonlinear solver. This type of package provides solutions to and requires
services from the APP, and utilizes services from one or more LALs. It can usually be
written so that it does not depend on the details of the computer platform, or the details of
how the APP and LALs are implemented, so that an ANA can be used across many APPs
and with many LALs.

• Linear Algebra Library (LAL): Software that provides the ability to construct concrete
linear algebra objects such as matrices and vectors. A LAL can also be a specific linear
solver or preconditioner.

An important focus of this paper is to clearly identify the interactions between APPs, ANAs and
LALs for the purposes of defining the Thyra interfaces and to differentiate the Thyra interfaces
from other interfacing efforts.

The requirements for the linear algebra objects as imposed by an ANA are very different from the
requirements imposed by an APP code. In order to differentiate the various types of interfaces
and the requirements associated with each, consider Figure 1. This figure shows the three major
categories of software modules that make up a complete numerical application. The first category
is application (APP) software in which the underlying data is defined for the problem. This could
be something as simple as the right-hand-side and matrix coefficients of a single linear system or
as complex as a finite-element method for a 3-D nonlinear PDE-constrained optimization
problem. The second category is linear algebra library (LAL) software that implements basic
linear algebra operations [9, 1, 5, 13, 2, 12]. These types of software include primarily the
implementations for matrix-vector multiplication, the creation of a preconditioner (e.g. ILU), and
may even include several different types of direct linear solvers. The third category is ANA
software that drives the main high-level solution process and includes such algorithms as iterative
methods for linear and nonlinear systems; explicit and implicit methods for ODEs and DAEs; and
nonlinear programming (NLP) solvers [16]. There are many example software packages
[2, 13, 12, 7, 4] that contain ANA software.

The types of ANAs described here only require operations like matrix-vector multiplication, linear
solves and certain types of vector reduction and transformation operations. All of these operations
can be performed with only a very abstract view of vectors, vector spaces and linear operators.

An application code, however, has the responsibility of populating vector and matrix objects and
requires the passing of explicit function and gradient value entries, sometimes in a distributed
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memory parallel environment. This is the purpose of an APP/LAL interface. This involves a very
different set of requirements than those described above for the ANA/APP and ANA/LAL
interfaces. Examples of APP/LAL interfaces include the FEI [8] and much of the ESI [14].

Figure 1 also shows a set of LAL/LAL interfaces that allows linear algebra objects from one LAL
to collaborate with the objects from another LAL. Theses interfaces are very similar to the
APP/LAL interfaces and the requirements for this type of interface is also not addressed by
Thyra. The ESI [14] contains examples of LAL/LAL interfaces.

The primary distinction between ANA (ANA/APP and ANA/LAL) and LAL (APP/LAL and
LAL/LAL) interfaces is that large amounts of concrete data are passed through LAL interfaces
but very little data is passed through ANA interfaces. For example, the Thyra fundamental ANA
operator/vector interfaces only pass very small arrays or single values of scalar floating point and
integral datatypes. On the other hand, LAL interfaces for vector and matrix coefficient loading
and accessing involve the direct manipulation and passing of large amounts of floating-point and
integral data objects. Because of the large amount of explicit data passed to and from the LAL
interfaces, they must have explicit knowledge of the computing platform, the distribution of data
to in various memory levels, and other complex details. Getting near optimal performance out of
LAL interfaces may require specialized application-specific and/or linear algebra implementation
specific interfaces. Because of this, LAL interfaces are necessarily much more complex and less
general than ANA interfaces and present challenges to the usage of runtime polymorphism (where
non-inlined virtual function call overhead may be large). Alternatively, ANA interfaces typically
hide large amounts of work per function call and pass very little data and therefore are well suited
to runtime polymorphic interfaces (e.g. using abstract base classes in C++ using virtual
functions).
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3 Some Basic Requirements for Thyra

Before describing the C++ interfaces for Thyra, some basic requirements are stated.

1. Thyra interfaces should be portable to all reasonable ASC [17] and office of science platforms
and environments where applications might run in addition to other important platforms.

2. Thyra interfaces should provide for stable and accurate numerical computations at a
fundamental level.

3. Thyra should provide a minimal, but comprehensive, interface that addresses all the basic
efficiency needs (in both speed and storage) which will result in near-optimal
implementations of all of the objects and all of the above mentioned ANA algorithms that
use these objects.

4. Thyra interfaces should efficiently and maintainably facilitate the development of basic
compositional design patterns [11] such as DECORATOR and COMPOSITE.

5. The work required to implement adapter subclasses (see the “Adapter” pattern in [11]) for
and with Thyra should be minimal and straightforward for all of the existing related linear
algebra and ANA interfaces. This requirement is facilitated by the fact that the Thyra
interfaces are minimal.

6. Maximally general ANAs developed with Thyra should be able to transparently utilize
different types of computing environments such as SPMD1, client/server2, out-of-core3,
complex multi-core architectures4 and any arbitrary combination of these configurations.

A hand-coded program (e.g. using Fortran 77 and MPI) should not provide any significant gains
in performance in any of the above categories in any computing environment or configuration. A
hand-coded algorithm in Fortran 77 with MPI should not be able to provide significant
improvements in storage requirements, computational speed, or numerical stability. There are
many numerical algorithms cannot be considered to be “abstract” (e.g. Gaussian Elimination)
and therefore Thyra and like abstract interfaces should not be used for such algorithms. However,
drawling the line between an ANA and a non-ANA can be quite fuzzy in practice.

1Single Program Multiple Data (SPMD): A single program running in a distributed-memory environment on
multiple parallel processors

2Client/Server: The ANA runs in a process on a client computer and the APP and LAL run in processors on a
server

3Out-of-core: The data for the problem is stored on disk and is read from and written to back disk as needed
4Multi-core architectures: Complex threading models and GPU platforms.
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4 Mathematical Foundation for Fundamental ANA
Operator/Vector Interfaces

Before describing the Thyra Fundamental ANA Operator/Vector Interfaces that form the
foundation for all of the Thyra ANA interfaces in more detail, we must first clearly define the
mathematical formulations suppored by Thyra for the abstractions of vectors, vector spaces, and
linear operators.

All Thyra vectors belong to a vector space and are representable as a finite-dimensional array of
scalar complex-valuded (or real valued) coefficients x̃ ∈ Cl n and a (non-unique) basis E ∈ IRn×n of
the form

x = Ex̃. (1)

For a given Thyra vector space, the basis representation E ∈ Cl n×n is non-unique but the
symmetric positive definite scalar (inner) product matrix

Q = ETE (2)

is unique where Q ∈ IRn×n. Given Q, the scalar product is defined as

xHy = x̃HQỹ =< x̃, ỹ > . (3)

For Q to be full rank, E must be full rank. Here we define a Euclidean vector space as one where
E = I and Q = EHE = I.

In Thyra, vector spaces and vectors are abstracted using the C++ base interface classes
Thyra::VectorSpaceBase and Thyra::VectorBase respectively. Vectors are created from a
vector space using the ABSTRACT FACTORY design pattern using the nonmember function
vec=createMember(vecSpc).

In addition to vectors and vector spaces, Thyra also defines linear operators which map vectors
from one vector space to another. The definition of a linear operator is strongly influenced by the
definition of the scalar product associated with the vector spaces and whether the mapping is
between Euclidean vectors y = Ax or between coefficient vectors ỹ = Ãx̃.

z = xHy (4)

then xH must be interpreted to be the adjoint linear operator of x.

Given this notation, the vector x would be considered to live in a Euclidean vector space x ∈ Cl n

while the vector x̃ would be considered to live in the non-Euclidean vector space x̃ ∈ X which is
defined by the scalar product matrix Q ∈ IRn×n. Therefore, it is actually not clear whether an
abstract vector object represents the Euclidean vector x ∈ Cl n which just happens to be stored as
a set of coefficients x̃ ∈ X or if it represents the coefficient vectors x̃ ∈ X themselves.

12



5 Overview of Fundamental Thyra ANA Operator/Vector
Interfaces

The Fundamental Thyra ANA Operator/Vector Interfaces are shown in Figure 2. The key
abstractions include vectors, vector spaces, and linear operators. All of the interfaces are
templated on a Scalar type5 but the UML notation for templated classes is not used in the figure
for the sake of improving readability. The memory management in Thyra is based on the Teuchos
memory management classes [?] which means it involves no raw pointers and largely eliminates
undefined behavior that is otherwise typical in C++ development.

Vector space is the foundation for all other abstractions. Vector spaces are abstracted through the
VectorSpaceBase interface. A VectorSpaceBase object acts primarily as an ABSTRACT
FACTORY [11] that creates vector objects (which are the “products” in the design pattern).

Vectors are abstracted through the VectorBase interface. The VectorBase interface is very
minimal and really only defines one nontrivial function applyOp(...) . The applyOp(...)

function accepts user-defined (i.e. ANA-defined) reduction/transformation operator (RTOp)
objects through the templated RTOp C++ interface RTOpPack::RTOpT . An ever increasing set of
concrete implementations of RTOps is provided along with wrapper convenience functions in the
Thyra ANA support code collection. The set of RTOp element-wise reduction/transformation
operations is also easily extensible and does not require any changes at all to any existing vector
implementation (which is the whole point). Every VectorBase object provides access to its
VectorSpaceBase (that was used to create the VectorBase object) through the function
space().

The VectorSpaceBase interface also provides the ability to create MultiVectorBase objects
through the createMembers(numMembers) function. A MultiVectorBase is a tall thin dense
matrix where each column in the matrix is a VectorBase object which is accessible through the
col(...) function. MultiVectorBase s are needed for near-optimal processor cache performance
(in serial and parallel programs) and to minimize the number of global communications in a
distributed parallel environment. The MultiVectorBase abstraction is critical in many different
types ANAs such as block Krylov methods. The interface class VectorBase is derived from
MultiVectorBase so that every VectorBase object is also a MultiVectorBase object as well.
This simplifies the development of ANAs in that any ANA that can handle MultiVectorBase

objects can also automatically accept VectorBase objects as well. (However, the derivation of
the vector interface from the multi-vector interface does lead to some increased complexity in
creating more derived interface subclasses by requiring the use of multiple inheritance.)

VectorSpaceBase declares a virtual function called scalarProd(x,y) which computes the scalar
product < x, y > for the vector space. There is also a MultiVectorBase version
VectorSpaceBase::scalarProds(...) (not shown in the figure) that computes the scalar
products of each set of column vectors in two multi-vectors. Finally, VectorSpaceBase includes
the ability to determine the compatibility of (multi)vectors from different vector spaces through
the function isCompatible(vecSpc) . This is useful primarily for error checking and debugging.

Another important type of linear algebra abstraction is a linear operator which is represented by

5Scalar types used with Thyra can be double, float, complex<float>, complex<double>, or any other concrete
value-type that has a specialization of Teuchos::ScalarTraits which includes various extended precision types.
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Thyra::VectorSpaceBase 

createMember(): VectorBase 
createMembers(in numMembers : int) : MultiVectorBase 
isCompatlbe(vecSpc : VectorSpaceBase) : bool 
scalarProd(in x : VectorBase, in y : VectorBase): Scalar 
… 

Thyra::VectorSpaceFactoryBase 

createVecSpc(in dim : Ordinal) : VectorSpaceBase 
… 

Thyra::LinearOpBase 

opSupported(M_trans : EOpTransp) : bool 
apply(M_trans : EOpTransp, X : MultiVectorBase,  
    inout Y : MultiVectorBase, alpha : Scalar=1.0, 
    beta  Scalar=0.0) 
… 

Thyra::MultiVectorBase 

applyOp(in op : RTOpT, in  multiVecs : MultiVectorBase[], 
    inout targMultiVecs : MultiVectorBase[], 
    inout reductObjs : ReductTarget[], … ) 
subView( colRng : Range1D) : MultiVectorBase 
… 

Thyra::VectorBase 

applyOp(in op : RTOpT, in  vecs : VectorBase[], 
    inout targiVecs : VectorBase[], 
    inout reductObj: ReductTarget, … ) 
… 

RTOpPack::RTOpT 

apply_op(in subVecs : ConstSubVectorView[], 
    inout targSubVecs : SubVectorView[], 
    inout reductObj : ReductTaret) 
reduct_reduct_objs(iin nReductObj : ReductTarget, 
    inout inoutReductTarget : ReductTarget) 
… 
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smallVecSpcFcty 
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1 

1…* columns 

«create» 

«create» 

«create» 

Figure 2. UML class diagram : The Thyra fundamental ANA
operator/vector interfaces
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the interface class LinearOpBase . The LinearOpBase interface is used to represent quantities
such as a derivative operators for nonlinear vector-valued functions f(x) such as the Jacobian
matrix ∂f/∂x. A LinearOpBase object defines a linear mapping for (multi)vectors in one vector
space (called the domain) to (multi)vectors in another vector space (called the range). Every
LinearOpBase object provides access to these vector spaces through the functions domain() and
range() . The exact form of this mapping, as implemented by the function apply(...) , is

Y = α op(M)X + βY (5)

where M is a LinearOpBase object; op(M) is M or MH ; X and Y are MultiVectorBase

objects; and α and β are Scalar objects.

The function opSupported(M trans) will return false if a particular form of the transpose is
not supported. Specifically, if the adjoint apply is supported, then opSupported(CONJTRANS)

returns true.

If the adjoint is supported, then it must satisfy the adjoint property. Specifically, for any two
vectors w ∈ D (domain space) and u ∈ R (range space), the adjoint operation must obey the
adjoint property

< u,Av >R==< AHu, v >D .

Another important part of this design is the fact that MultiVectorBase derives from
LinearOpBase and therefore every multi-vector object is also a linear operator. This is an elegant
way to support the notions of block inner products and block updates.

A multi-vector block inner product is specified as

Z = Y HX

where Y , X and Z are all multi-vectors. Note that since Y is a linear operator then Y HX is not
simply the block dot product involving the coefficients but instead must be consistent with the
scalar product associated with the range space of Y .

A multi-vector block update takes the form

Z = αY X + βZ

where Y , X and Z are all multi-vectors and α and β are scalars.

Together, these basic linear operators applications, block inner products and block updates form
the basic operations needed to implement block Krylov and other block numerical aglorithms.

Also note that since MultiVectorBase derives from LinearOpBase and VectorBase derives from
MultiVectorBase , therefore, every vector object is also a linear operator. While this may not be
a terribly useful feature it does mean that one must interpret yHx to be the same as < y, x > and
not just the dot product when a non-Euclidean vector space is involved.
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6 Interpretations and limitations of Thyra interfaces

The Thyra Fundamental ANA Operator/Vector Interfaces require that every Thyra vector be
represented as a finite-dimensional set of scalar coefficients and that the scalar product < x̃, ỹ >
be equivalent to the two-sided application of some finite-dimensional symmetric positive definite
matrix Q ∈ IRn×n such that < x̃, ỹ >= x̃HQỹ. The Thyra interfaces do not try to pretend that
it’s vectors are infinite dimensional or that they admit more general implementations as allowed
by infinite dimensional Hilbert spaces. While every Thyra vector must be stored as a set of scalar
coefficients, the interfaces make no assumptions whatsoever about where or how it’s coefficients
are stored. A fully general ANA can make no assumptions about how vectors are stored or laid
out in memory (or even if any of the elements are cheaply accepssible), only that those coefficients
do exist and that the coefficients can be exposed to reduction and transformation operators (see
[3]).

While accessing the elements of a generic vector is ill advised in a general ANA, the Thyra vector
interface supports acquiring direct views of any range of vector coefficient data (see
Thyra::VectorBase::acquireDetachedView(...)).

Again, Thyra interfaces do not try to hide the fact that a vector is simply a set of scalar
coefficients associated with some basis. Thyra does not even really try to keep the client ANAs
from accessing the actual coefficients of the vectors since it can access them with an RTOp object
if desired. What Thyra does do is to abstract where the vector coefficients live and what native
data structure is used to hold the coefficients. None of vector coefficients may even be directly be
head in main memory in the process where the ANA is running (e.g. GPUs) but there is aways a
(perhaps very inefficient) mechanism to get a view of and retrieve them using RTOps. ANAs that
want to be maximally general and efficient should not try to directly access the vector elements
explicitly and many ANAs do not need to.

Side Note: However, there are perfectly reasonable ANAs that do need to access the explicit
vector coefficients for vectors from certain vector spaces (such as vectors in the design space in
some reduced-space optimization algorithms in a solver such as MOOCHO [?]) and Thyra
provides efficient and yet 100% general ways to access these coefficients. Every Thyra vector
space also has a finite dimension that is accessible as a property of the vector space and is
exposed as a (64 bit) integral datatype through VectorSpaceBase::dim().

While Thyra requires vectors to be finite dimensional and the vector coefficients must be
accessible (if to none other than to RTOps), it allows complete freedom in the implementation of
scalar products and of general linear operators that map vectors from one vector space to another.
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7 Summary

The Thyra Fundamental Operator/Vector Interfaces provide the intersection of a comprehensive
range of the functionality required of linear operators and vectors by a variety of abstract
numerical algorithms ranging from basic iterative linear solvers all the way up to interior-point
methods for optimization. By adopting Thyra as a standard interface layer, interoperability
between applications, linear algebra libraries, and abstract numerical algorithms in advanced
scientific computing environments becomes automatic to a large extent.
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