ROL
Public Member Functions | Private Attributes | List of all members
ROL::ConDualStdVector< Real, Element > Class Template Reference
+ Inheritance diagram for ROL::ConDualStdVector< Real, Element >:

Public Member Functions

 ConDualStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual const Vectordual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 

Private Attributes

Teuchos::RCP< std::vector
< Element > > 
std_vec_
 

Detailed Description

template<class Real, class Element = Real>
class ROL::ConDualStdVector< Real, Element >

Definition at line 72 of file ROL_SimpleEqConstrained.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void ROL::ConDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 237 of file ROL_SimpleEqConstrained.hpp.

References ROL::ConDualStdVector< Real, Element >::dimension().

template<class Real, class Element = Real>
void ROL::ConDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 256 of file ROL_SimpleEqConstrained.hpp.

References ROL::ConDualStdVector< Real, Element >::dimension().

template<class Real, class Element = Real>
Real ROL::ConDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 263 of file ROL_SimpleEqConstrained.hpp.

References ROL::ConDualStdVector< Real, Element >::dimension().

template<class Real, class Element = Real>
Real ROL::ConDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 284 of file ROL_SimpleEqConstrained.hpp.

References ROL::ConDualStdVector< Real, Element >::dimension().

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > ROL::ConDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 294 of file ROL_SimpleEqConstrained.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > ROL::ConDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 302 of file ROL_SimpleEqConstrained.hpp.

template<class Real, class Element = Real>
int ROL::ConDualStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 308 of file ROL_SimpleEqConstrained.hpp.

Referenced by ROL::ConDualStdVector< Real, Element >::dot(), ROL::ConDualStdVector< Real, Element >::norm(), ROL::ConDualStdVector< Real, Element >::plus(), and ROL::ConDualStdVector< Real, Element >::scale().


The documentation for this class was generated from the following file: