ROL
Public Member Functions | Private Attributes | List of all members
OptDualStdVector< Real, Element > Class Template Reference

#include <example_02.hpp>

+ Inheritance diagram for OptDualStdVector< Real, Element >:

Public Member Functions

 OptDualStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptDualStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec)
 
void plus (const ROL::Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const ROL::Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< ROL::Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< ROL::Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const ROL::Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptDualStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec, Teuchos::RCP< FiniteDifference< Real > >fd)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
 OptDualStdVector (const Teuchos::RCP< std::vector< Element > > &std_vec, bool useRiesz, Teuchos::RCP< InnerProductMatrix< Real > > ipmat)
 
void plus (const Vector< Real > &x)
 Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More...
 
void scale (const Real alpha)
 Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More...
 
Real dot (const Vector< Real > &x) const
 Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More...
 
Real norm () const
 Returns \( \| y \| \) where \(y = \mathtt{*this}\). More...
 
Teuchos::RCP< Vector< Real > > clone () const
 Clone to make a new (uninitialized) vector. More...
 
Teuchos::RCP< const
std::vector< Element > > 
getVector () const
 
Teuchos::RCP< Vector< Real > > basis (const int i) const
 Return i-th basis vector. More...
 
int dimension () const
 Return dimension of the vector space. More...
 
const Vector< Real > & dual () const
 Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More...
 
- Public Member Functions inherited from ROL::Vector< Real >
virtual ~Vector ()
 
virtual void axpy (const Real alpha, const Vector &x)
 Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More...
 
virtual void zero ()
 Set to zero vector. More...
 
virtual void set (const Vector &x)
 Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More...
 
virtual std::vector< Real > checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
 Verify vector-space methods. More...
 

Private Attributes

Teuchos::RCP< std::vector
< Element > > 
std_vec_
 
Teuchos::RCP< OptStdVector
< Real > > 
dual_vec_
 
Teuchos::RCP< FiniteDifference
< Real > > 
fd_
 
bool useRiesz_
 
Teuchos::RCP
< InnerProductMatrix< Real > > 
ipmat_
 

Detailed Description

template<class Real, class Element = Real>
class OptDualStdVector< Real, Element >

Definition at line 69 of file dual-spaces/rosenbrock-1/example_01.cpp.

Constructor & Destructor Documentation

template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec)
inline
template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec,
Teuchos::RCP< FiniteDifference< Real > >  fd 
)
inline

Definition at line 209 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
OptDualStdVector< Real, Element >::OptDualStdVector ( const Teuchos::RCP< std::vector< Element > > &  std_vec,
bool  useRiesz,
Teuchos::RCP< InnerProductMatrix< Real > >  ipmat 
)
inline

Definition at line 202 of file gross-pitaevskii/example_03.hpp.

Member Function Documentation

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 155 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 164 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 171 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::norm().

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 182 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 188 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::OptDualStdVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( ) const
inline
template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 196 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::OptDualStdVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 202 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

Referenced by OptDualStdVector< Real, Element >::dot(), OptDualStdVector< Real, Element >::plus(), and OptDualStdVector< Real, Element >::scale().

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 204 of file dual-spaces/rosenbrock-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_, and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const ROL::Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 158 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 167 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const ROL::Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 174 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dimension(), OptDualStdVector< Real, Element >::getVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 185 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dot().

template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 191 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::OptDualStdVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( ) const
inline
template<class Real, class Element = Real>
Teuchos::RCP<ROL::Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 199 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::OptDualStdVector(), and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 205 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
const ROL::Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 207 of file dual-spaces/simple-eq-constr-1/example_01.cpp.

References OptDualStdVector< Real, Element >::dual_vec_, and OptDualStdVector< Real, Element >::std_vec_.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 212 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 221 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 228 of file gross-pitaevskii/example_02.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 242 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 248 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( ) const
inline

Definition at line 252 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 256 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 262 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 264 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::plus ( const Vector< Real > &  x)
inlinevirtual

Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector to be added to \(\mathtt{*this}\).

On return \(\mathtt{*this} = \mathtt{*this} + x\).


Implements ROL::Vector< Real >.

Definition at line 205 of file gross-pitaevskii/example_03.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
void OptDualStdVector< Real, Element >::scale ( const Real  alpha)
inlinevirtual

Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).

Parameters
[in]alphais the scaling of \(\mathtt{*this}\).

On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).


Implements ROL::Vector< Real >.

Definition at line 214 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::dot ( const Vector< Real > &  x) const
inlinevirtual

Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).

Parameters
[in]xis the vector that forms the dot product with \(\mathtt{*this}\).
Returns
The number equal to \(\langle \mathtt{*this}, x \rangle\).

Implements ROL::Vector< Real >.

Definition at line 221 of file gross-pitaevskii/example_03.hpp.

References OptDualStdVector< Real, Element >::getVector().

template<class Real, class Element = Real>
Real OptDualStdVector< Real, Element >::norm ( ) const
inlinevirtual

Returns \( \| y \| \) where \(y = \mathtt{*this}\).

Returns
A nonnegative number equal to the norm of \(\mathtt{*this}\).

Implements ROL::Vector< Real >.

Definition at line 239 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptDualStdVector< Real, Element >::clone ( ) const
inlinevirtual

Clone to make a new (uninitialized) vector.

Returns
A reference-counted pointer to the cloned vector.

Provides the means of allocating temporary memory in ROL.


Implements ROL::Vector< Real >.

Definition at line 245 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<const std::vector<Element> > OptDualStdVector< Real, Element >::getVector ( ) const
inline

Definition at line 249 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<Vector<Real> > OptDualStdVector< Real, Element >::basis ( const int  i) const
inlinevirtual

Return i-th basis vector.

Parameters
[in]iis the index of the basis function.
Returns
A reference-counted pointer to the basis vector with index i.

Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.


Reimplemented from ROL::Vector< Real >.

Definition at line 253 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
int OptDualStdVector< Real, Element >::dimension ( ) const
inlinevirtual

Return dimension of the vector space.

Returns
The dimension of the vector space, i.e., the total number of basis vectors.

Overload if the basis is overloaded.


Reimplemented from ROL::Vector< Real >.

Definition at line 259 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
const Vector<Real>& OptDualStdVector< Real, Element >::dual ( void  ) const
inlinevirtual

Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.

Returns
A const reference to dual representation.

By default, returns the current object. Please overload if you need a dual representation.


Reimplemented from ROL::Vector< Real >.

Definition at line 261 of file gross-pitaevskii/example_03.hpp.

Member Data Documentation

template<class Real, class Element = Real>
Teuchos::RCP< std::vector< Element > > OptDualStdVector< Real, Element >::std_vec_
private
template<class Real, class Element = Real>
Teuchos::RCP< OptStdVector< Real > > OptDualStdVector< Real, Element >::dual_vec_
mutableprivate
template<class Real, class Element = Real>
Teuchos::RCP<FiniteDifference<Real> > OptDualStdVector< Real, Element >::fd_
private

Definition at line 205 of file gross-pitaevskii/example_02.hpp.

template<class Real, class Element = Real>
bool OptDualStdVector< Real, Element >::useRiesz_
private

Definition at line 197 of file gross-pitaevskii/example_03.hpp.

template<class Real, class Element = Real>
Teuchos::RCP<InnerProductMatrix<Real> > OptDualStdVector< Real, Element >::ipmat_
private

Definition at line 198 of file gross-pitaevskii/example_03.hpp.


The documentation for this class was generated from the following files: